5,980 research outputs found
The relationship between phonological and morphological deficits in Broca's aphasia: further evidence from errors in verb inflection
A previous study of 10 patients with Broca’s aphasia demonstrated that the advantage for producing the past tense of irregular over regular verbs exhibited by these patients was eliminated when the two sets of past-tense forms were matched for phonological complexity (Bird, Lambon Ralph, Seidenberg, McClelland, & Patterson, 2003). The interpretation given was that a generalised phonological impairment was central to the patients’ language deficits, including their poor performance on regular past tense verbs. The current paper provides further evidence in favour of this hypothesis, on the basis of a detailed analysis of the errors produced by these same 10 patients in reading, repetition, and sentence completion for a large number of regular, irregular, and nonce verbs. The patients’ predominant error types in all tasks and for all verb types were close and distant phonologically related responses. The balance between close and distant errors varied along three continua: the severity of the patient (more distant errors produced by the more severely impaired patients); the difficulty of the task (more distant errors in sentence completion > reading > repetition); the difficulty of the item (more distant errors for novel word forms than real verbs). A position analysis for these phonologically related errors revealed that vowels were most likely to be preserved and that consonant onsets and offsets were equally likely to be incorrect. Critically, the patients’ errors exhibited a strong tendency to simplify the phonological form of the target. These results are consistent with the notion that the patients’ relatively greater difficulty with regular past tenses reflects a phonological impairment that is sensitive to the complexity of spoken forms
Measurement of the Superparticle Mass Spectrum in the Long-Lived Stau Scenario at the LHC
In supersymmetric scenarios with a long-lived stau, the LHC experiments
provide us with a great environment for precise mass measurements of
superparticles. We study a case in which the mass differences between the
lightest stau and other sleptons are about 10 GeV or larger, so that the decay
products of heavier sleptons are hard enough to be detected. We demonstrate
that the masses of neutralinos, sleptons, and squarks can be measured with a
good accuracy.Comment: 20 pages, 6 figure
Bino Dark Matter and Big Bang Nucleosynthesis in the Constrained E6SSM with Massless Inert Singlinos
We discuss a new variant of the E6 inspired supersymmetric standard model
(E6SSM) in which the two inert singlinos are exactly massless and the dark
matter candidate has a dominant bino component. A successful relic density is
achieved via a novel mechanism in which the bino scatters inelastically into
heavier inert Higgsinos during the time of thermal freeze-out. The two massless
inert singlinos contribute to the effective number of neutrino species at the
time of Big Bang Nucleosynthesis, where the precise contribution depends on the
mass of the Z' which keeps them in equilibrium. For example for mZ' > 1300 GeV
we find Neff \approx 3.2, where the smallness of the additional contribution is
due to entropy dilution. We study a few benchmark points in the constrained
E6SSM with massless inert singlinos to illustrate this new scenario.Comment: 24 pages, revised for publication in JHE
Novel critical point drying (CPD) based preparation and transmission electron microscopy (TEM) imaging of protein specific molecularly imprinted polymers (HydroMIPs)
We report the transmission electron microscopy (TEM) imaging of a hydrogel-based molecularly imprinted polymer (HydroMIP) specific to the template molecule bovine haemoglobin (BHb). A novel critical point drying based sample preparation technique was employed to prepare the molecularly imprinted polymer (MIP) samples in a manner that would facilitate the use of TEM to image the imprinted cavities, and provide an appropriate degree of both magnification and resolution to image polymer architecture in the <10 nm range. For the first time, polymer structure has been detailed that clearly displays molecularly imprinted cavities, ranging from 5-50 nm in size, that correlate (in terms of size) with the protein molecule employed as the imprinting template. The modified critical point drying sample preparation technique used may potentially play a key role in the imaging of all molecularly imprinted polymers, particularly those prepared in the aqueous phase
Gravitino dark matter in the constrained next-to-minimal supersymmetric standard model with neutralino next-to-lightest superpartner
The viability of a possible cosmological scenario is investigated. The
theoretical framework is the constrained next-to-minimal supersymmetric
standard model (cNMSSM), with a gravitino playing the role of the lightest
supersymmetric particle (LSP) and a neutralino acting as the next-to-lightest
supersymmetric particle (NLSP). All the necessary constraints from colliders
and cosmology have been taken into account. For gravitino we have considered
the two usual production mechanisms, namely out-of equillibrium decay from the
NLSP, and scattering processes from the thermal bath. The maximum allowed
reheating temperature after inflation, as well as the maximum allowed gravitino
mass are determined.Comment: 20 pages, 5 figure
The gravitino coupling to broken gauge theories applied to the MSSM
We consider gravitino couplings in theories with broken gauge symmetries. In
particular, we compute the single gravitino production cross section in W+ W-
fusion processes. Despite recent claims to the contrary, we show that this
process is always subdominant to gluon fusion processes in the high energy
limit. The full calculation is performed numerically; however, we give analytic
expressions for the cross section in the supersymmetric and electroweak limits.
We also confirm these results with the use of the effective theory of goldstino
interactions.Comment: 26 pages, 4 figure
Dark Matter, Muon g-2 and Other SUSY Constraints
Recent developments constraining the SUSY parameter space are reviewed within
the framework of SUGRA GUT models. The WMAP data is seen to reduce the error in
the density of cold dark matter by about a factor of four, implying that the
lightest stau is only 5 -10 GeV heavier than the lightest neutralino when m_0,
m_{1/2} < 1 TeV. The CMD-2 re-analysis of their data has reduced the
disagreement between the Standard Model prediction and the Brookhaven
measurement of the muon magnetic moment to 1.9 sigma, while using the tau decay
data plus CVC, the disagreement is 0.7 sigma. (However, the two sets of data
remain inconsistent at the 2.9 sigma level.) The recent Belle and BABAR
measurements of the B -> phi K CP violating parameters and branching ratios are
discussed. They are analyzed theoretically within the BBNS improved
factorization method. The CP parameters are in disagreement with the Standard
Model at the 2.7 sigma level, and the branching ratios are low by a factor of
two or more over most of the parameter space. It is shown that both anomalies
can naturally be accounted for by adding a non-universal cubic soft breaking
term at M_G mixing the second and third generations.Comment: 16 pages, 7 figures, plenary talk at Beyond The Desert '03, Castle
Ringberg, Germany, June 9, 2003. Typos correcte
A Two-Tiered Correlation of Dark Matter with Missing Transverse Energy: Reconstructing the Lightest Supersymmetric Particle Mass at the LHC
We suggest that non-trivial correlations between the dark matter particle
mass and collider based probes of missing transverse energy H_T^miss may
facilitate a two tiered approach to the initial discovery of supersymmetry and
the subsequent reconstruction of the LSP mass at the LHC. These correlations
are demonstrated via extensive Monte Carlo simulation of seventeen benchmark
models, each sampled at five distinct LHC center-of-mass beam energies,
spanning the parameter space of No-Scale F-SU(5).This construction is defined
in turn by the union of the Flipped SU(5) Grand Unified Theory, two pairs of
hypothetical TeV scale vector-like supersymmetric multiplets with origins in
F-theory, and the dynamically established boundary conditions of No-Scale
Supergravity. In addition, we consider a control sample comprised of a standard
minimal Supergravity benchmark point. Led by a striking similarity between the
H_T^miss distribution and the familiar power spectrum of a black body radiator
at various temperatures, we implement a broad empirical fit of our simulation
against a Poisson distribution ansatz. We advance the resulting fit as a
theoretical blueprint for deducing the mass of the LSP, utilizing only the
missing transverse energy in a statistical sampling of >= 9 jet events.
Cumulative uncertainties central to the method subsist at a satisfactory 12-15%
level. The fact that supersymmetric particle spectrum of No-Scale F-SU(5) has
thrived the withering onslaught of early LHC data that is steadily decimating
the Constrained Minimal Supersymmetric Standard Model and minimal Supergravity
parameter spaces is a prime motivation for augmenting more conventional LSP
search methodologies with the presently proposed alternative.Comment: JHEP version, 17 pages, 9 Figures, 2 Table
Long-lived stops in MSSM scenarios with a neutralino LSP
This work investigates the possibility of a long-lived stop squark in
supersymmetric models with the neutralino as the lightest supersymmetric
particle (LSP). We study the implications of meta-stable stops on the sparticle
mass spectra and the dark matter density. We find that in order to obtain a
sufficiently long stop lifetime so as to be observable as a stable R-hadron at
an LHC experiment, we need to fine tune the mass degeneracy between the stop
and the LSP considerably. This increases the stop-neutralino coanihilation
cross section, leaving the neutralino relic density lower than what is expected
from the WMAP results for stop masses ~1.5 TeV/c^2. However, if such scenarios
are realised in nature we demonstrate that the long-lived stops will be
produced at the LHC and that stop-based R-hadrons with masses up to 1 TeV/c^2
can be detected after one year of running at design luminosity
- …
