4,774 research outputs found

    Effect of water vapor on the spallation of thermal barrier coating systems during laboratory cyclic oxidation testing.

    Get PDF
    The effect of water and water vapor on the lifetime of Ni-based superalloy samples coated with a typical thermal barrier coating system—b-(Ni,Pt)Al bond coat and yttria stabilized zirconia (YSZ) top coat deposited by electron beam physical vapor deposition (EB-PVD) was studied. Samples were thermally cycled to 1,150 C and subjected to a water-drop test in order to elucidate the effect of water vapor on thermal barrier coating (TBC) spallation. It was shown that the addition of water promotes spallation of TBC samples after a given number of cycles at 1,150 C. This threshold was found to be equal to 170 cycles for the present system. Systems based on b-NiAl bond coat or on Pt-rich c/c0 bond coat were also sensitive to the water-drop test. Moreover, it was shown that water vapor in ambient air after minutes or hours at room temperature, promotes also TBC spallation once the critical number of cycles has been reached. This desktop spalling (DTS) can be prevented by locking up the cycled samples in a dry atmosphere box. These results for TBC systems confirm and document Smialek’s theory about DTS and moisture induced delayed spalling (MIDS) being the same phenomenon. Finally, the mechanisms implying hydrogen embrittlement or surface tension modifications are discussed

    Infinite element in meshless approaches

    Get PDF

    Finite-Temperature Phase Transition in a Class of Four-State Potts Antiferromagnets

    Get PDF
    We argue that the four-state Potts antiferromagnet has a finite-temperature phase transition on any Eulerian plane triangulation in which one sublattice consists of vertices of degree 4. We furthermore predict the universality class of this transition. We then present transfer-matrix and Monte Carlo data confirming these predictions for the cases of the Union Jack and bisected hexagonal lattices

    Differential Regulation of Extracellular Matrix and Soluble Fibulin-1 Levels by TGF-β<inf>1</inf> in Airway Smooth Muscle Cells

    Get PDF
    Fibulin-1 (FBLN-1) is a secreted glycoprotein that is associated with extracellular matrix (ECM) formation and rebuilding. Abnormal and exaggerated deposition of ECM proteins is a hallmark of many fibrotic diseases, such as chronic obstructive pulmonary disease (COPD) where small airway fibrosis occurs. The aim of this study was to investigate the regulation of FBLN-1 by transforming growth factor beta 1 (TGF-β1) (a pro-fibrotic stimulus) in primary human airway smooth muscle (ASM) cells from volunteers with and without COPD. Human ASM cells were seeded at a density of 1×104 cells/cm2, and stimulated with or without TGF-β1 (10 ng/ml) for 72 hours before FBLN-1 deposition and soluble FBLN-1 were measured. Fold change in FBLN-1 mRNA was measured at 4, 8, 24, 48, 72 hours. In some experiments, cycloheximide (0.5 μg/ml) was used to assess the regulation of FBLN-1 production. TGF-β1 decreased the amount of soluble FBLN-1 both from COPD and non-COPD ASM cells. In contrast, the deposition of FBLN-1 into the ECM was increased in ASM cells obtained from both groups. TGF-β1 did not increase FBLN-1 gene expression at any of the time points. There were no differences in the TGF-β1 induced FBLN-1 levels between cells from people with or without COPD. Cycloheximide treatment, which inhibits protein synthesis, decreased both the constitutive release of soluble FBLN-1, and TGF-β1 induced ECM FBLN-1 deposition. Furthermore, in cycloheximide treated cells addition of soluble FBLN-1 resulted in incorporation of FBLN-1 into the ECM. Therefore the increased deposition of FBLN-1 by ASM cells into the ECM following treatment with TGF-β1 is likely due to incorporation of soluble FBLN-1 rather than de-novo synthesis. © 2013 Chen et al

    Hidden patterns of codon usage bias across kingdoms

    Get PDF
    The genetic code encodes 20 amino acids using 64 nucleotide triplets or codons. 18 of the 20 amino acids are encoded by multiple synonymous codons which are used in organismal genomes in a biased fashion. Codon bias arises because evolutionary selection favours particular nucleotide sequences over others encoding the same amino acid sequence. Despite many existing hypotheses, there is no current consensus on what the evolutionary drivers are. Using ideas from stochastic thermodynamics we derive from first principles a mathematical model describing the statistics of codon usage bias and apply it to extensive genomic data. Our main conclusions include the following findings: (1) Codon usage cannot be explained solely by selection pressures that act on the genome-wide frequency of codons, but also includes pressures that act at the level of individual genes. (2) Codon usage is not only biased in the usage frequency of nucleotide triplets but also in how they are distributed across mRNAs. (3) A new model-based measure of codon usage bias that extends existing measures by taking into account both codon frequency and codon distribution reveals distinct, amino acid specific patterns of selection in distinct branches of the tree of life

    Effects of cigarette smoke extract on human airway smooth muscle cells in COPD

    Full text link
    We hypothesised that the response to cigarette smoke in airway smooth muscle (ASM) cells from smokers with chronic obstructive pulmonary disease (COPD) would be intrinsically different from smokers without COPD, producing greater pro-inflammatory mediators and factors relating to airway remodelling. ASM cells were obtained from smokers with or without COPD, and then stimulated with cigarette smoke extract (CSE) or transforming growth factor-β1. The production of chemokines and matrix metalloproteinases (MMPs) were measured by ELISA, and the deposition of collagens by extracellular matrix ELISA. The effects of CSE on cell attachment and wound healing were measured by toluidine blue attachment and cell tracker green wound healing assays. CSE increased the release of CXCL8 and CXCL1 from human ASM cells, and cells from smokers with COPD produced more CSE-induced CXCL1. The production of MMP-1, -3 and -10, and the deposition of collagen VIII alpha 1 (COL8A1) were increased by CSE, especially in the COPD group which had higher production of MMP-1 and deposition of COL8A1. CSE decreased ASM cell attachment and wound healing in the COPD group only. ASM cells from smokers with COPD were more sensitive to CSE stimulation, which may explain, in part, why some smokers develop COPD. Copyright ©ERS 2014

    Conformal symmetry of the critical 3D Ising model inside a sphere

    Get PDF
    We perform Monte-Carlo simulations of the three-dimensional Ising model at the critical temperature and zero magnetic field. We simulate the system in a ball with free boundary conditions on the two dimensional spherical boundary. Our results for one and two point functions in this geometry are consistent with the predictions from the conjectured conformal symmetry of the critical Ising model.We are grateful to Slava Rychkov for useful discussions and for suggesting this work. The research leading to these results has received funding from the [European Union] Seventh Framework Programme [FP7-People-2010-IRSES] and [FP7/2007-2013] under grant agreements No 269217, 317089 and No 247252, and from the grant CERN/FP/123599/2011. Centro de Física do Porto is partially funded by the Foundation for Science and Technology of Portugal (FCT). J.V.P.L. acknowledges funding from projecto Operacional Regional do Norte, within Quadro de Referência Estratégico Nacional (QREN) and through Fundo Europeu de Desenvolvimento Regional (FEDER), Ref. NORTE-07-0124-FEDER- 00003

    Comparison of Whole Blood and Peripheral Blood Mononuclear Cell Gene Expression for Evaluation of the Perioperative Inflammatory Response in Patients with Advanced Heart Failure

    Get PDF
    Background: Heart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP) was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC) transcriptomes obtained from patients’ blood samples. Whole blood (WB) samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined. Methods: We collected blood samples from 31 HF patients (57¡15 years old) undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively) (25–75% IQR 7–14 days) and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA) score was used to characterize the severity of MOD into low (# 4 points), intermediate (5–11), and high ($ 12) risk categories correlating with GEP. Results: Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO) analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups. Conclusion: GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MO

    Controlling a magnetic Feshbach resonance with laser light

    Full text link
    The capability to tune the strength of the elastic interparticle interaction is crucial for many experiments with ultracold gases. Magnetic Feshbach resonances are a tool widely used for this purpose, but future experiments would benefit from additional flexibility such as spatial modulation of the interaction strength on short length scales. Optical Feshbach resonances offer this possibility in principle, but suffer from fast particle loss due to light-induced inelastic collisions. Here we show that light near-resonant with a molecular bound-to-bound transition can be used to shift the magnetic field at which a magnetic Feshbach resonance occurs. This makes it possible to tune the interaction strength with laser light and at the same time induce considerably less loss than an optical Feshbach resonance would do
    • …
    corecore