46 research outputs found

    Evaluation of Functional Erythropoietin Receptor Status in Skeletal Muscle In Vivo: Acute and Prolonged Studies in Healthy Human Subjects

    Get PDF
    BACKGROUND: Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS: The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased. CONCLUSIONS/SIGNIFICANCE: Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue

    Targeted Disruption of the PME-1 Gene Causes Loss of Demethylated PP2A and Perinatal Lethality in Mice

    Get PDF
    Phosphoprotein phosphatase 2A (PP2A), a major serine-threonine protein phosphatase in eukaryotes, is an oligomeric protein comprised of structural (A) and catalytic (C) subunits to which a variable regulatory subunit (B) can associate. The C subunit contains a methyl ester post-translational modification on its C-terminal leucine residue, which is removed by a specific methylesterase (PME-1). Methylesterification is thought to control the binding of different B subunits to AC dimers, but little is known about its physiological significance in vivo.Here, we show that targeted disruption of the PME-1 gene causes perinatal lethality in mice, a phenotype that correlates with a virtually complete loss of the demethylated form of PP2A in the nervous system and peripheral tissues. Interestingly, PP2A catalytic activity over a peptide substrate was dramatically reduced in PME-1(-/-) tissues, which also displayed alterations in phosphoproteome content.These findings suggest a role for the demethylated form of PP2A in maintenance of enzyme function and phosphorylation networks in vivo

    Cyclosporine before PCI in Patients with Acute Myocardial Infarction

    Get PDF
    BACKGROUND: Experimental and clinical evidence suggests that cyclosporine may attenuate reperfusion injury and reduce myocardial infarct size. We aimed to test whether cyclosporine would improve clinical outcomes and prevent adverse left ventricular remodeling. METHODS: In a multicenter, double-blind, randomized trial, we assigned 970 patients with an acute anterior ST-segment elevation myocardial infarction (STEMI) who were undergoing percutaneous coronary intervention (PCI) within 12 hours after symptom onset and who had complete occlusion of the culprit coronary artery to receive a bolus injection of cyclosporine (administered intravenously at a dose of 2.5 mg per kilogram of body weight) or matching placebo before coronary recanalization. The primary outcome was a composite of death from any cause, worsening of heart failure during the initial hospitalization, rehospitalization for heart failure, or adverse left ventricular remodeling at 1 year. Adverse left ventricular remodeling was defined as an increase of 15% or more in the left ventricular end-diastolic volume. RESULTS: A total of 395 patients in the cyclosporine group and 396 in the placebo group received the assigned study drug and had data that could be evaluated for the primary outcome at 1 year. The rate of the primary outcome was 59.0% in the cyclosporine group and 58.1% in the control group (odds ratio, 1.04; 95% confidence interval [CI], 0.78 to 1.39; P=0.77). Cyclosporine did not reduce the incidence of the separate clinical components of the primary outcome or other events, including recurrent infarction, unstable angina, and stroke. No significant difference in the safety profile was observed between the two treatment groups. CONCLUSIONS: In patients with anterior STEMI who had been referred for primary PCI, intravenous cyclosporine did not result in better clinical outcomes than those with placebo and did not prevent adverse left ventricular remodeling at 1 year. (Funded by the French Ministry of Health and NeuroVive Pharmaceutical; CIRCUS ClinicalTrials.gov number, NCT01502774; EudraCT number, 2009-013713-99.)

    The socio-legal implications of the new biotechnologies

    No full text
    This review explores a number of legal-theoretical studies of the encounter between law and biotechnology. Rather than attempt an extensive compilation of scholarship, the review focuses on those studies that have addressed the effects that biotechnologies (understood in the broadest sense) have had on the composition of legal form. Although the relation between law and biotechnology is often seen as being one in which law is applied to biotechnology as a kind of prohibitory limit or regulatory force, this review explores some of the ways in which biotechnological programs have challenged and eroded the conceptual form of law. The hypothesis is that there is an antagonistic relation between law and biotechnology and that this antagonism is brought out in scholarship relating to the key areas in which the encounter between law and biotechnology is played out: intellectual property, governance and regulation, and those domains of law that have incorporated technologies of DNA fingerprinting
    corecore