40 research outputs found

    Rapid method for determination of DNA repair capacity in human peripheral blood lymphocytes amongst smokers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA repair capacity is an important determinant of susceptibility to cancer. The hOGG1 enzyme is crucial for repairing the 8-oxoguanine lesion that occurs either as a byproduct of oxidative metabolism or as a result of exogenous sources such as exposure to cigarette smoke. It has been previously reported that smokers with low hOGG1 activity had significantly higher risk of developing lung cancer as compared to smokers with high hOGG1 activity.</p> <p>Methods</p> <p>In the current study we elucidate the association between plasma levels of 8-OHdG and the OGG1 repair capacity. We used the commercially available 8-OHdG ELISA (enzyme-linked immunosorbent assay), the Comet assay/FLARE hOGG1 (Fragment Length Analysis by Repair Enzymes) assay for quantification of the levels of 8-OHdG and measured the constitutive, induced and unrepaired residual damage, respectively. We compared the DNA repair capacity in peripheral blood lymphocytes following H<sub>2</sub>O<sub>2 </sub>exposure in 30 lung cancer patients, 30 non-, 30 former and 30 current smoker controls matched by age and gender.</p> <p>Results</p> <p>Our results show that lung cancer cases and current smoker controls have similar levels of 8-OHdG lesions that are significantly higher compared to the non-smokers controls. However, lung cancer cases showed significantly poorer repair capacity compared to all controls tested, including the current smokers controls. After adjustment for age, gender and family history of smoking-related cancer using linear regression, we observed a 5-fold increase in risk of lung cancer associated with high levels of residual damage/reduced repair capacity. Reduced OGG1 activity could be expected to be a risk factor in other smoking-related cancers.</p> <p>Conclusion</p> <p>Our study shows that the Comet/FLARE assay is a relatively rapid and useful method for determination of DNA repair capacity. Using this assay we could identify individuals with high levels of residual damage and hence poor repair capacity who would be good candidates for intensive follow-up and screening.</p

    Human macrophage foam cells degrade atherosclerotic plaques through cathepsin K mediated processes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteolytic degradation of Type I Collagen by proteases may play an important role in remodeling of atherosclerotic plaques, contributing to increased risk of plaque rupture.</p> <p>The aim of the current study was to investigate whether human macrophage foam cells degrade the extracellular matrix (ECM) of atherosclerotic plaques by cathepsin K mediated processes.</p> <p>Methods</p> <p>We 1) cultured human macrophages on ECM and measured cathepsin K generated fragments of type I collagen (C-terminal fragments of Type I collagen (CTX-I) 2) investigated the presence of CTX-I in human coronary arteries and 3) finally investigated the clinical potential by measuring circulating CTX-I in women with and without radiographic evidence of aortic calcified atherosclerosis.</p> <p>Results</p> <p>Immune-histochemistry of early and advanced lesions of coronary arteries demonstrated co-localization of Cathepsin-K and CTX-I in areas of intimal hyperplasia and in shoulder regions of advanced plaques. Treatment of human monocytes with M-CSF or M-CSF+LDL generated macrophages and foam cells producing CTX-I when cultured on type I collagen enriched matrix. Circulating levels of CTX-I were not significantly different in women with aortic calcifications compared to those without.</p> <p>Conclusions</p> <p>Human macrophage foam cells degrade the atherosclerotic plaques though cathepsin K mediated processes, resulting in increase in levels of CTX-I. Serum CTX-I was not elevated in women with aortic calcification, likely due to the contribution of CTX-I from osteoclastic bone resorption which involves Cathepsin-K. The human macrophage model system may be used to identify important pathway leading to excessive proteolytic plaque remodeling and plaque rupture.</p

    Upregulation of bfl-1 is a potential mechanism of chemoresistance in B-cell chronic lymphocytic leukaemia

    Get PDF
    B-cell chronic lymphocytic leukaemia (B-CLL) is characterised by the progressive accumulation of monoclonal CD5+ B cells. In a previous study, we have analysed the expression profile of apoptosis-regulating genes using a cDNA-based microarray and found overexpression of the antiapoptotic bcl-2 family member, bfl-1, in B-CLL cells with an apoptosis-resistant phenotype. In this study, bfl-1 mRNA levels have been determined by competitive PCR in an extended population of B-CLL patients to characterise its role in disease progression and development of chemoresistance. bfl-1 levels were significantly higher in patients with no response (NR) to last chemotherapy than in patients responding (partial response (PR)) to last chemotherapy (P<0.05) and in patients who had not required treatment (P<0.05). We found no correlation between bfl-1 mRNA levels and disease progression, IGHV mutational status or other clinical parameters. In addition, bfl-1 mRNA levels were inversely correlated with apoptotic response to in vitro fludarabine treatment of B-CLL cells. Specific downregulation of bfl-1 using siRNA induced apoptosis in resistant cells. Our data suggest that bfl-1 contributes to chemoresistance and might be a therapeutic target in B-CLL

    Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    Get PDF
    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin.This study was financially supported by GrapeGen Project funded by Genoma España within a collaborative agreement with Genome Canada. The authors also thank The Ministerio de Ciencia e Innovacion for project BIO2008-03892 and a bilateral collaborative grant with Argentina (AR2009-0021). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe

    DNA glycosylases: in DNA repair and beyond

    Get PDF
    The base excision repair machinery protects DNA in cells from the damaging effects of oxidation, alkylation, and deamination; it is specialized to fix single-base damage in the form of small chemical modifications. Base modifications can be mutagenic and/or cytotoxic, depending on how they interfere with the template function of the DNA during replication and transcription. DNA glycosylases play a key role in the elimination of such DNA lesions; they recognize and excise damaged bases, thereby initiating a repair process that restores the regular DNA structure with high accuracy. All glycosylases share a common mode of action for damage recognition; they flip bases out of the DNA helix into a selective active site pocket, the architecture of which permits a sensitive detection of even minor base irregularities. Within the past few years, it has become clear that nature has exploited this ability to read the chemical structure of DNA bases for purposes other than canonical DNA repair. DNA glycosylases have been brought into context with molecular processes relating to innate and adaptive immunity as well as to the control of DNA methylation and epigenetic stability. Here, we summarize the key structural and mechanistic features of DNA glycosylases with a special focus on the mammalian enzymes, and then review the evidence for the newly emerging biological functions beyond the protection of genome integrity

    Geographic patterns in fruit colour diversity: do leaves constrain the colour of fleshy fruits?

    Get PDF
    7 pages, 2 figures.-- Supplementary material available: The list of fruit species, their colour as perceived by humans, their provenance and main disperser types. The dispersal category "mixed" refers to species consumed by birds and mammals (XLS, 43 kb).We tested for geographic patterns in fruit colour diversity. Fruit colours are thought to promote detection by seed dispersers. Because seed dispersers differ in their spectral sensitivities, we predicted that fruit colour diversity would be higher in regions with higher seed disperser diversity (i.e. the tropics). We collected reflectance data on 232 fruiting plant species and their natural backgrounds in seven localities in Europe, North and South America, and analysed fruit colour diversity according to the visual system of birds—the primary consumer types of these fruits. We found no evidence that fruit colours are either more conspicuous or more diverse in tropical areas characterised by higher seed disperser diversity. Instead, fruit colour diversity was lowest in central Brazil, suggesting that fruit colours may be more diverse in temperate regions. Although we found little evidence for geographic variation in fruit hues, the spectral properties of fruits were positively associated with the spectral properties of backgrounds. This result implies that fruit colours may be influenced by selection on the reflectance properties of leaves, thus constraining the evolution of fruit colour. Overall, the results suggest that fruit colours in the tropics are neither more diverse nor more conspicuous than temperate fruits, and that fruit colours may be influenced by correlated selection on leaf reflectance properties.H.M.S. was sponsored by a Deutsche Forschungsgemeinschaft (DFG) grant (Scha 1008/4-1). E.C. was sponsored by Fundaçao de Amparo à Pesquisa do Estado de Sao Paulo (Fapesp) and a Deutscher Akademischer Austausch Dienst (DAAD) fellowship. M.G. was sponsored by Fapesp and receives a research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and E.C. a Fapesp fellowship. A.V. was supported by the Marie Curie European programme (grant MERG-CT-2004-510260), I3P [Consejo Superior de Investigaciones Científicas (CSIC)] and Acción Integrada (HA2006-0038; Ministerio de Educación y Ciencia).Peer reviewe
    corecore