463 research outputs found

    Nucleation and growth of platelets in hydrogen-ion-implanted silicon

    Get PDF
    H ion implantation into crystalline Si is known to result in the precipitation of planar defects in the form of platelets. Hydrogen-platelet formation is critical to the process that allows controlled cleavage of Si along the plane of the platelets and subsequent transfer and integration of thinly sliced Si with other substrates. Here we show that H-platelet formation is controlled by the depth of the radiation-induced damage and then develop a model that considers the influence of stress to correctly predict platelet orientation and the depth at which platelet nucleation density is a maximum. © 2005 American Institute of Physics

    Role of strain in the blistering of hydrogen-implanted silicon

    Get PDF
    The authors investigated the physical mechanisms underlying blistering in hydrogen-implanted silicon by examining the correlation between implantation induced damage, strain distribution, and vacancy diffusion. Using Rutherford backscattering, scanning electron microscopy, and atomic force microscopy, they found that the depth of blisters coincided with that of maximum implantation damage. A model based on experimental results is presented showing the effect of tensile strain on the local diffusion of vacancies toward the depth of maximum damage, which promotes the nucleation and growth of platelets and ultimately blisters. © 2006 American Institute of Physics

    The dietary practices and beliefs of British South Asian people living with inflammatory bowel disease: a multicenter study from the United Kingdom

    Get PDF
    © 2022 Korean Association for the Study of Intestinal Diseases. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.5217/ir.2020.00079Background/Aims: Epidemiological associations have implicated factors associated with Westernization, including the Western diet, in the development of inflammatory bowel disease (IBD). The role of diet in IBD etiopathogenesis, disease control and symptom management remains incompletely understood. Few studies have collected data on the dietary habits of immigrant populations living with IBD. Our aim was to describe the dietary practices and beliefs of British South Asians with IBD. Methods: A 30-item questionnaire was developed and consecutively administered to 255 British South Asians with IBD attending gastroenterology clinics in the United Kingdom. Results: Fifty-one percent of participants believed diet was the initiating factor for their IBD and 63% felt diet had previously triggered disease relapse. Eighty-nine percent avoided certain dietary items in the belief that this would prevent relapse. The most commonly avoided foods and drinks were spicy and fatty foods, carbonated drinks, milk products, alcohol, coffee, and red meat. A third of patients had tried a whole food exclusion diet, most commonly lactose or gluten-free, and this was most frequently reported amongst those with clinically active IBD (P=0.02). Almost 60% of participants avoided eating the same menu as their family, or eating out, at least sometimes, to prevent IBD relapse. Conclusions: British South Asians with IBD demonstrate significant dietary beliefs and food avoidance behaviors with increased frequency compared to those reported in Caucasian IBD populations. Studies in immigrant populations may offer valuable insights into the interaction between diet, Westernization and cultural drift in IBD pathogenesis and symptomatology.This work was supported by an investigator-initiated research grant from Takeda (Grant ID ISSR-2018-102453).Published versio

    Comparing Static and Dynamic Weighted Software Coupling Metrics

    Get PDF
    Coupling metrics that count the number of inter-module connections in a software system are an established way to measure internal software quality with respect to modularity. In addition to static metrics, which are obtained from the source or compiled code of a program, dynamic metrics use runtime data gathered, e.g., by monitoring a system in production. Dynamic metrics have been used to improve the accuracy of static metrics for object-oriented software. We study weighted dynamic coupling that takes into account how often a connection (e.g., a method call) is executed during a system’s run. We investigate the correlation between dynamic weighted metrics and their static counterparts. To compare the different metrics, we use data collected from four different experiments, each monitoring production use of a commercial software system over a period of four weeks. We observe an unexpected level of correlation between the static and the weighted dynamic case as well as revealing differences between class- and package-level analyses

    Osseous erosion by herniated nucleus pulposus mimicking intraspinal tumor: a case report

    Get PDF
    Erosion of spinal osseous structure, so-called scalloping, has been rarely reported associated with herniated nucleus pulposus (HNP). We report a rare case of HNP causing erosion of the spinal osseous structure (including lamina). The patient was an 81-year-old woman with 3-year history of low-back pain and left leg radiating pain. Muscle weakness of the left leg was also apparent. Computed tomography following myelography showed severe compression of the dural sac at the level of L3–L4; furthermore, erosion of the lamina, pedicle, and vertebral body was noted, indicating that the space-occupying mass was most probably a tumorous lesion. The mass also showed calcification inside. During the surgery, the mass was confirmed to be an HNP with calcification. Following resection, the pain disappeared. Surgeons should be aware of the possibility of scalloping of the vertebrae caused by HNP mimicking a tumorous lesion

    Characterisation of bioenergetic pathways and related regulators by multiple assays in human tumour cells

    Get PDF
    Background: Alterations in cellular metabolism are considered as hallmarks of cancers, however, to recognize these alterations and understand their mechanisms appropriate techniques are required. Our hypothesis was to determine whether dominant bioenergetic mechanism may be estimated by comparing the substrate utilisation with different methods to detect the labelled carbon incorporation and their application in tumour cells. Methods: To define the bioenergetic pathways different metabolic tests were applied: (a) measuring CO2 production from [1-14C]-glucose and [1-14C]-acetate; (b) studying the effect of glucose and acetate on adenylate energy charge; (c) analysing glycolytic and TCA cycle metabolites and the number of incorporated 13C atoms after [U-13C]-glucose/[2-13C]-acetate labelling. Based on [1-14C]-substrate oxidation two selected cell lines out of seven were analysed in details, in which the highest difference was detected at their substrate utilization. To elucidate the relevance of metabolic characterisation the expression of certain regulatory factors, bioenergetic enzymes, mammalian target of rapamycin (mTOR) complexes (C1/C2) and related targets as important elements at the crossroad of cellular signalling network were also investigated. Results: Both [U-13C]-glucose and [1-14C]-substrate labelling indicated high glycolytic capacity of tumour cells. However, the ratio of certain 13C-labelled metabolites showed detailed metabolic differences in the two selected cell lines in further characterisation. The detected differences of GAPDH, β-F1-ATP-ase expression and adenylate energy charge in HT-1080 and ZR-75.1 tumour cells also confirmed the altered metabolism. Moreover, the highly limited labelling of citrate by [2-13C]-acetate-representing a novel functional test in malignant cells-confirmed the defect of TCA cycle of HT-1080 in contrast to ZR-75.1 cells. Noteworthy, the impaired TCA cycle in HT-1080 cells were associated with high mTORC1 activity, negligible protein level and activity of mTORC2, high expression of interleukin-1β, interleukin-6 and heme oxygenase-1 which may contribute to the compensatory mechanism of TCA deficiency. Conclusions: The applied methods of energy substrate utilisation and other measurements represent simple assay system using 13C-acetate and glucose to recognize dominant bioenergetic pathways in tumour cells. These may offer a possibility to characterise metabolic subtypes of human tumours and provide guidelines to find biomarkers for prediction and development of new metabolism related targets in personalized therapy. © 2016 Jeney et al

    Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Get PDF
    Background - Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results - Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions - Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction

    Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen and one of the leading causes of nosocomial infections worldwide. The difficulty in treatment of pseudomonas infections arises from being multidrug resistant (MDR) and exhibits resistance to most antimicrobial agents due to the expression of different mechanisms overcoming their effects. Of these resistance mechanisms, the active efflux pumps in Pseudomonas aeruginosa that belong to the resistance nodulation division (RND) plays a very important role in extruding the antibiotics outside the bacterial cells providing a protective means against their antibacterial activity. Beside its role against the antimicrobial agents, these pumps can extrude biocides, detergents, and other metabolic inhibitors. It is clear that efflux pumps can be targets for new antimicrobial agents. Peptidomimetic compounds such as phenylalanine arginyl β-naphthylamide (PAβN) have been introduced as efflux pump inhibitors (EPIs); their mechanism of action is through competitive inhibition with antibiotics on the efflux pump resulting in increased intracellular concentration of antibiotic, hence, restoring its antibacterial activity. The advantage of EPIs is the difficulty to develop bacterial resistance against them, but the disadvantage is their toxic property hindering their clinical application. The structure activity relationship of these compounds showed other derivatives from PAβN that are higher in their activity with higher solubility in biological fluids and decreased toxicity level. This raises further questions on how can we compact Pseudomonas infections. Of particular importance, the recent resurgence in the use of older antibiotics such as polymyxins and probably applying stricter control measures in order to prevent their spread in clinical sittings
    corecore