47 research outputs found

    Diclofenac Inhibits Tumor Growth in a Murine Model of Pancreatic Cancer by Modulation of VEGF Levels and Arginase Activity

    Get PDF
    BACKGROUND: Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A(2) (PLA(2)), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. METHODOLOGY/PRINCIPAL FINDINGS: We found that diclofenac treatment (30 mg/kg/bw for 11 days) of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. CONCLUSION/SIGNIFICANCE: In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion

    Risk factors for acute respiratory tract infections in general practitioner patients in The Netherlands: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute respiratory tract infections (ARTI) are an important public health problem. Improved identification of risk factors might enable targeted intervention. Therefore we carried out a case-control study with the aim of identifying environmental risk factors for ARTI consultations in the Dutch general population.</p> <p>Methods</p> <p>A subset of patients visiting their GP in the period of 2000–2003 with an ARTI (cases) and age-matched controls (visiting for other complaints) were included in a case-control study. They were asked to complete a questionnaire about potential risk factors. Conditional logistic regression was used to calculate odds ratio's (OR) and 95% confidence intervals (CI) to estimate the independent effect of potential risk factors.</p> <p>Results</p> <p>A total of 493 matched pairs of case and control subjects were enrolled. Exposure to persons with respiratory complaints, both inside and outside the household, was found to be an independent risk factor for visiting a GP with an ARTI (respectively OR<sub>adj </sub>= 1.9 and OR<sub>adj </sub>= 3.7). Participants exposed to dampness or mould at home (OR<sub>adj</sub>=0.5) were significantly less likely to visit their GP. In accordance with the general risk of consultations for ARTI, participants with a laboratory-confirmed ARTI who were exposed to persons with respiratory complaints outside the household were also significantly more likely to visit their GP (OR<sub>adj</sub>=2.5).</p> <p>Conclusion</p> <p>This study confirmed that heterogeneity in the general population as well as in pathogens causing ARTI makes it complicated to detect associations between potential risk factors and respiratory infections. Whereas it may be difficult to intervene on the risk posed by exposure to persons with respiratory complaints, transmission of ARTI in the general population might be reduced by improved hygienic conditions.</p

    Identification of Upper Respiratory Tract Pathogens Using Electrochemical Detection on an Oligonucleotide Microarray

    Get PDF
    Bacterial and viral upper respiratory infections (URI) produce highly variable clinical symptoms that cannot be used to identify the etiologic agent. Proper treatment, however, depends on correct identification of the pathogen involved as antibiotics provide little or no benefit with viral infections. Here we describe a rapid and sensitive genotyping assay and microarray for URI identification using standard amplification and hybridization techniques, with electrochemical detection (ECD) on a semiconductor-based oligonucleotide microarray. The assay was developed to detect four bacterial pathogens (Bordetella pertussis, Streptococcus pyogenes, Chlamydia pneumoniae and Mycoplasma pneumoniae) and 9 viral pathogens (adenovirus 4, coronavirus OC43, 229E and HK, influenza A and B, parainfluinza types 1, 2, and 3 and respiratory syncytial virus. This new platform forms the basis for a fully automated diagnostics system that is very flexible and can be customized to suit different or additional pathogens. Multiple probes on a flexible platform allow one to test probes empirically and then select highly reactive probes for further iterative evaluation. Because ECD uses an enzymatic reaction to create electrical signals that can be read directly from the array, there is no need for image analysis or for expensive and delicate optical scanning equipment. We show assay sensitivity and specificity that are excellent for a multiplexed format

    2013 WSES guidelines for management of intra-abdominal infections

    Get PDF
    Peer reviewe
    corecore