39 research outputs found

    Strategies in a metallophyte species to cope with manganese excess

    Get PDF
    The effect of exposure to high Mn concentration was studied in a metallophyte species, Erica andevalensis, using hydroponic cultures with a range of Mn concentrations (0.06, 100, 300, 500, and 700 mg L-1). At harvest, biomass production, element uptake, and biochemical indicators of metal stress (leaf pigments, organic acids, amino acids, phenols, and activities of catalase, peroxidase, superoxide dismutase) were determined in leaves and roots. Increasing Mn concentrations led to a decrease in biomass accumulation, and tip leaves chlorosis was the only toxicity symptom detected. In a similar way, photosynthetic pigments (chlorophylls a and b, and carotenoids) were affected by high Mn levels. Among organic acids, malate and oxalate contents in roots showed a significant increase at the highest Mn concentration, while in leaves, Mn led to an increasing trend in citrate and malate contents. An increase of Mn also induced an increase in superoxide dismutase activity in roots and catalase activity in leaves. As well, significant changes in free amino acids were induced by Mn concentrations higher than 300 mg L-1, especially in roots. No significant changes in phenolic compounds were observed in the leaves, but root phenolics were significantly increased by increasing Mn concentrations in treatments. When Fe supply was increased 10 and 20 times (7–14 mg Fe L-1 as Fe-EDDHA) in the nutrient solutions at the highest Mn concentration (700 mg Mn L-1), it led to significant increases in photosynthetic pigments and biomass accumulation. Manganese was mostly accumulated in the roots, and the species was essentially a Mn excluder. However, considering the high leaf Mn concentration recorded without toxicity symptoms, E. andevalensis might be rated as a Mn-tolerant speciesinfo:eu-repo/semantics/publishedVersio

    Association analysis of low-phosphorus tolerance in West African pearl millet using DArT markers

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.] is a food security crop in the harshest agricultural regions of the world. While low soil phosphorus (P) availability is a big constraint on its production, especially in West Africa (WA), information on genomic regions responsible for low-P tolerance in pearl millet is generally lacking. We present the first report on genetic polymorphisms underlying several plant P-related parameters, flowering time (FLO) and grain yield (GY) under P-limiting conditions based on 285 diversity array technology markers and 151 West African pearl millet inbred lines phenotyped in six environments in WA under both high-P and low-P conditions. Nine markers were significantly associated with P-related traits, nine markers were associated with FLO, whereas 13 markers were associated with GY each explaining between 5.5 and 15.9 % of the observed variation. Both constitutive and adaptive associations were observed for FLO and GY, with markers PgPb11603 and PgPb12954 being associated with the most stable effects on FLO and GY, respectively, across locations. There were a few shared polymorphisms between traits, especially P-efficiency-related traits and GY, implying possible colocation of genomic regions responsible for these traits. Our findings help bridge the gap between quantitative and molecular methods of studying complex traits like low-P tolerance in WA. However, validation of these markers is necessary to determine their potential applicability in marker-assisted selection programs targeting low-P environments, which are especially important in WA where resource-poor farmers are expected to be the hardest hit by the approaching global P crisis

    Dear Enemies Elicit Lower Androgen Responses to Territorial Challenges than Unfamiliar Intruders in a Cichlid Fish

    Get PDF
    In many territorial species androgen hormones are known to increase in response to territorial intrusions as a way to adjust the expression of androgen-dependent behaviour to social challenges. The dear enemy effect has also been described in territorial species and posits that resident individuals show a more aggressive response to intrusions by strangers than by other territorial neighbours. Therefore, we hypothesized that the dear enemy effect may also modulate the androgen response to a territorial intrusion. Here we tested this hypothesis in male cichlid fish (Mozambique tilapia, Oreochromis mossambicus) using a paradigm of four repeated territorial intrusions, either by the same neighbour or by four different unfamiliar intruders. Neighbour intruders elicited lower aggression and a weaker androgen response than strangers on the first intrusion of the experiment. With repeated intrusions, the agonistic behaviour of the resident males against familiar intruders was similar to that displayed towards strangers. By the fourth intrusion the androgen response was significantly reduced and there was no longer a difference between the responses to the two types of intruders. These results suggest that the dear enemy effect modulates the androgen response to territorial intrusions and that repeated intrusions lead to a habituation of the androgen response
    corecore