32 research outputs found

    Quantifying unpredictability: A multiple-model approach based on satellite imagery data from Mediterranean ponds.

    Get PDF
    Fluctuations in environmental parameters are increasingly being recognized as essential features of any habitat. The quantification of whether environmental fluctuations are prevalently predictable or unpredictable is remarkably relevant to understanding the evolutionary responses of organisms. However, when characterizing the relevant features of natural habitats, ecologists typically face two problems: (1) gathering long-term data and (2) handling the hard-won data. This paper takes advantage of the free access to long-term recordings of remote sensing data (27 years, Landsat TM/ETM+) to assess a set of environmental models for estimating environmental predictability. The case study included 20 Mediterranean saline ponds and lakes, and the focal variable was the water-surface area. This study first aimed to produce a method for accurately estimating the water-surface area from satellite images. Saline ponds can develop salt-crusted areas that make it difficult to distinguish between soil and water. This challenge was addressed using a novel pipeline that combines band ratio water indices and the short near-infrared band as a salt filter. The study then extracted the predictable and unpredictable components of variation in the water-surface area. Two different approaches, each showing variations in the parameters, were used to obtain the stochastic variation around a regular pattern with the objective of dissecting the effect of assumptions on predictability estimations. The first approach, which is based on Colwell's predictability metrics, transforms the focal variable into a nominal one. The resulting discrete categories define the relevant variations in the water-surface area. In the second approach, we introduced General Additive Model (GAM) fitting as a new metric for quantifying predictability. Both approaches produced a wide range of predictability for the studied ponds. Some model assumptions-which are considered very different a priori-had minor effects, whereas others produced predictability estimations that showed some degree of divergence. We hypothesize that these diverging estimations of predictability reflect the effect of fluctuations on different types of organisms. The fluctuation analysis described in this manuscript is applicable to a wide variety of systems, including both aquatic and nonaquatic systems, and will be valuable for quantifying and characterizing predictability, which is essential within the expected global increase in the unpredictability of environmental fluctuations. We advocate that a priori information for organisms of interest should be used to select the most suitable metrics estimating predictability, and we provide some guidelines for this approach

    High Differentiation among Eight Villages in a Secluded Area of Sardinia Revealed by Genome-Wide High Density SNPs Analysis

    Get PDF
    To better design association studies for complex traits in isolated populations it's important to understand how history and isolation moulded the genetic features of different communities. Population isolates should not “a priori” be considered homogeneous, even if the communities are not distant and part of a small region. We studied a particular area of Sardinia called Ogliastra, characterized by the presence of several distinct villages that display different history, immigration events and population size. Cultural and geographic isolation characterized the history of these communities. We determined LD parameters in 8 villages and defined population structure through high density SNPs (about 360 K) on 360 unrelated people (45 selected samples from each village). These isolates showed differences in LD values and LD map length. Five of these villages show high LD values probably due to their reduced population size and extreme isolation. High genetic differentiation among villages was detected. Moreover population structure analysis revealed a high correlation between genetic and geographic distances. Our study indicates that history, geography and biodemography have influenced the genetic features of Ogliastra communities producing differences in LD and population structure. All these data demonstrate that we can consider each village an isolate with specific characteristics. We suggest that, in order to optimize the study design of complex traits, a thorough characterization of genetic features is useful to identify the presence of sub-populations and stratification within genetic isolates

    Automatic target recognition based on cross-plot

    Get PDF
    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository.Kelvin Kian Loong Wong and Derek Abbot

    Handling missing values with regularized iterative multiple correspondence analysis

    Get PDF
    A common approach to deal with missing values in multivariate exploratory data analysis consists in minimizing the loss function over all non-missing elements, which can be achieved by EM-type algorithms where an iterative imputation of the missing values is performed during the estimation of the axes and components. This paper proposes such an algorithm, named iterative multiple correspondence analysis, to handle missing values in multiple correspondence analysis (MCA). The algorithm, based on an iterative PCA algorithm, is described and its properties are studied. We point out the overfitting problem and propose a regularized version of the algorithm to overcome this major issue. Finally, performances of the regularized iterative MCA algorithm (implemented in the R-package named missMDA) are assessed from both simulations and a real dataset. Results are promising with respect to other methods such as the missing-data passive modified margin method, an adaptation of the missing passive method used in Gifi's Homogeneity analysis framework
    corecore