3,817 research outputs found

    Verreaux’s Eagle Owl Bubo lacteus attacked by Thick-billed Ravens Corvus crassirostris

    Get PDF
    No Abstract

    Prevention of cardiovascular disease in patients with familial hypercholesterolaemia: the role of PCSK9 inhibitors

    Get PDF
    Familial hypercholesterolaemia is an autosomal dominant inherited disorder characterised by elevated low-density lipoprotein cholesterol levels and consequently an increased risk of atherosclerotic cardiovascular disease (ASCVD). Familial hypercholesterolaemia is relatively common, but is often underdiagnosed and undertreated. Cardiologists are likely to encounter many individuals with familial hypercholesterolaemia; however, patients presenting with premature ASCVD are rarely screened for familial hypercholesterolaemia and fasting lipid levels are infrequently documented. Given that individuals with familial hypercholesterolaemia and ASCVD are at a particularly high risk of subsequent cardiac events, this is a missed opportunity for preventive therapy. Furthermore, because there is a 50% chance that first-degree relatives of individuals with familial hypercholesterolaemia will also be affected by the disorder, the underdiagnosis of familial hypercholesterolaemia among patients with ASCVD is a barrier to cascade screening and the prevention of ASCVD in affected relatives. Targeted screening of patients with ASCVD is an effective strategy to identify new familial hypercholesterolaemia index cases. Statins are the standard treatment for individuals with familial hypercholesterolaemia; however, low-density lipoprotein cholesterol targets are not achieved in a large proportion of patients despite treatment. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been shown to reduce low-density lipoprotein cholesterol levels considerably in individuals with familial hypercholesterolaemia who are concurrently receiving the maximal tolerated statin dose. The clinical benefit of PCSK9 inhibitors must, however, also be considered in terms of their cost-effectiveness. Increased awareness of familial hypercholesterolaemia is required among healthcare professionals, particularly cardiologists and primary care physicians, in order to start early preventive measures and to reduce the mortality and morbidity associated with familial hypercholesterolaemia and ASCVD

    Structural phase transition in IrTe2_2: A combined study of optical spectroscopy and band structure calculations

    Full text link
    Ir1x_{1-x}Ptx_xTe2_2 is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe2_2 in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (px_x, py_y) and Te pz_z bands.Comment: 16 pages, 5 figure

    Control over phase separation and nucleation using a laser-tweezing potential

    Get PDF
    Control over the nucleation of new phases is highly desirable but elusive. Even though there is a long history of crystallization engineering by varying physicochemical parameters, controlling which polymorph crystallizes or whether a molecule crystallizes or forms an amorphous precipitate is still a poorly understood practice. Although there are now numerous examples of control using laser-induced nucleation, the absence of physical understanding is preventing progress. Here we show that the proximity of a liquid–liquid critical point or the corresponding binodal line can be used by a laser-tweezing potential to induce concentration gradients. A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation using a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter

    Limits of minimal models and continuous orbifolds

    Get PDF
    The lambda=0 't Hooft limit of the 2d W_N minimal models is shown to be equivalent to the singlet sector of a free boson theory, thus paralleling exactly the structure of the free theory in the Klebanov-Polyakov proposal. In 2d, the singlet sector does not describe a consistent theory by itself since the corresponding partition function is not modular invariant. However, it can be interpreted as the untwisted sector of a continuous orbifold, and this point of view suggests that it can be made consistent by adding in the appropriate twisted sectors. We show that these twisted sectors account for the `light states' that were not included in the original 't Hooft limit. We also show that, for the Virasoro minimal models (N=2), the twisted sector of our orbifold agrees precisely with the limit theory of Runkel & Watts. In particular, this implies that our construction satisfies crossing symmetry.Comment: 33 pages; v2: minor improvements and references added, published versio

    Cardiac-Oxidized Antigens Are Targets of Immune Recognition by Antibodies and Potential Molecular Determinants in Chagas Disease Pathogenesis

    Get PDF
    Trypanosoma cruzi elicits reactive oxygen species (ROS) of inflammatory and mitochondrial origin in infected hosts. In this study, we examined ROS-induced oxidative modifications in the heart and determined whether the resultant oxidized cardiac proteins are targets of immune response and of pathological significance in Chagas disease. Heart biopsies from chagasic mice, rats and human patients exhibited, when compared to those from normal controls, a substantial increase in protein 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), carbonyl, and 3-nitrotyrosine (3-NT) adducts. To evaluate whether oxidized proteins gain antigenic properties, heart homogenates or isolated cardiomyocytes were oxidized in vitro and one- or two-dimensional gel electrophoresis (2D-GE)/Western blotting (WB) was performed to investigate the proteomic oxidative changes and recognition of oxidized proteins by sera antibodies in chagasic rodents (mice, rats) and human patients. Human cardiomyocytes exhibited LD50 sensitivity to 30 µM 4-HNE and 100 µM H2O2 at 6 h and 12 h, respectively. In vitro oxidation with 4-HNE or H2O2 resulted in a substantial increase in 4-HNE- and carbonyl-modified proteins that correlated with increased recognition of cardiac (cardiomyocytes) proteins by sera antibodies of chagasic rodents and human patients. 2D-GE/Western blotting followed by MALDI-TOF-MS/MS analysis to identify cardiac proteins that were oxidized and recognized by human chagasic sera yielded 82 unique proteins. We validated the 2D-GE results by enzyme-linked immunosorbent assay (ELISA) and WB and demonstrated that oxidation of recombinant titin enhanced its immunogenicity and recognition by sera antibodies from chagasic hosts (rats and humans). Treatment of infected rats with phenyl-α-tert-butyl nitrone (PBN, antioxidant) resulted in normalized immune detection of cardiac proteins associated with control of cardiac pathology and preservation of heart contractile function in chagasic rats. We conclude that ROS-induced, cardiac-oxidized antigens are targets of immune recognition by antibodies and molecular determinants for pathogenesis during Chagas disease

    Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data

    Get PDF
    Genome-wide association studies (GWASs) identify single nucleotide polymorphisms (SNPs) that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome
    corecore