106 research outputs found

    Topic modeling applied to business research: A latent dirichlet allocation (LDA)-based classification for organization studies

    Get PDF
    More than 1.5 million academic documents are published each year, and this trend shows an incremental tendency for the following years. One of the main challenges for the academic community is how to organize this huge volume of documentation to have a sense of the knowledge frontier. In this study we applied Latent Dirichlet Allocation (LDA) techniques to identify primary topics in organization studies, and analyzed the relationships between academic impact and belonging to the topics detected by LDA

    HoxA-11 and FOXO1A Cooperate to Regulate Decidual Prolactin Expression: Towards Inferring the Core Transcriptional Regulators of Decidual Genes

    Get PDF
    During the menstrual cycle, the ovarian steroid hormones estrogen and progesterone control a dramatic transcriptional reprogramming of endometrial stromal cells (ESCs) leading to a receptive state for blastocyst implantation and the establishment of pregnancy. A key marker gene of this decidualization process is the prolactin gene. Several transcriptional regulators have been identified that are essential for decidualization of ESCs, including the Hox genes HoxA-10 and HoxA-11, and the forkhead box gene FOXO1A. While previous studies have identified downstream target genes for HoxA-10 and FOXO1A, the role of HoxA-11 in decidualization has not been investigated. Here, we show that HoxA-11 is required for prolactin expression in decidualized ESC. While HoxA-11 alone is a repressor on the decidual prolactin promoter, it turns into an activator when combined with FOXO1A. Conversely, HoxA-10, which has been previously shown to associate with FOXO1A to upregulate decidual IGFBP-1 expression, is unable to upregulate PRL expression when co-expressed with FOXO1A. By co-immunoprecipitation and chromatin immunoprecipitation, we demonstrate physical association of HoxA-11 and FOXO1A, and binding of both factors to an enhancer region (−395 to −148 relative to the PRL transcriptional start site) of the decidual prolactin promoter. Because FOXO1A is induced upon decidualization, it serves to assemble a decidual-specific transcriptional complex including HoxA-11. These data highlight cooperativity between numerous transcription factors to upregulate PRL in differentiating ESC, and suggest that this core set of transcription factors physically and functionally interact to drive the expression of a gene battery upregulated in differentiated ESC. In addition, the functional non-equivalence of HoxA-11 and HoxA-10 with respect to PRL regulation suggests that these transcription factors regulate distinct sets of target genes during decidualization

    Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products

    Get PDF
    A voltammetric biosensor based on tyrosinase (TYR) was developed for determination of tyramine. Carbon material (multi-walled carbon nanotubes or mesoporous carbon CMK-3-type), polycationic polymer—i.e., poly(diallyldimethylammonium chloride) (PDDA), and Nafion were incorporated into titania dioxide sol (TiO(2)) to create an immobilization matrix. The features of the formed matrix were studied by scanning electron microscopy (SEM) and cyclic voltammetry (CV). The analytical performance of the developed biosensor was evaluated with respect to linear range, sensitivity, limit of detection, long-term stability, repeatability, and reproducibility. The biosensor exhibited electrocatalytic activity toward tyramine oxidation within a linear range from 6 to 130 μM, high sensitivity of 486 μA mM(−1) cm(−2), and limit of detection of 1.5 μM. The apparent Michaelis–Menten constant was calculated to be 66.0 μM indicating a high biological affinity of the developed biosensor for tyramine. Furthermore, its usefulness in determination of tyramine in food product samples was also verified. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-016-9612-y) contains supplementary material, which is available to authorized users

    Mitochondrial fusion is regulated by Reaper to modulate Drosophila programmed cell death

    Get PDF
    In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die

    Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    Get PDF
    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells' interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered

    A randomised multicentre phase II trial of capecitabine vs S-1 as first-line treatment in elderly patients with metastatic or recurrent unresectable gastric cancer

    Get PDF
    This randomised multicentre phase II study was conducted to investigate the activity and safety of two oral fluoropyrimidines, capecitabine or S-1, in elderly patients with advanced gastric cancer (AGC). Elderly (⩾65 years) chemo-naive patients with AGC were randomly assigned to receive capecitabine 1250 mg m−2 two times daily on days 1–14 every 3 weeks or S-1 40–60 mg two times daily according to body surface area on days 1–28 every 6 weeks. Ninety-six patients were enrolled and 91 patients were randomised to capecitabine (N=46) or S-1 (N=45). Overall response rate, the primary end point, was 27.2% (95% CI, 14.1–40.4, 12 of 44 assessable patients) with capecitabine and 28.9% (95% CI, 15.6–42.1, 13 of 45) with S-1. Median times to progression and overall survival in the capecitabine arm (4.7 and 9.5 months, respectively) were similar to those in the S-1 arm (4.2 and 8.2 months, respectively). The incidence of grade 3–4 granulocytopenia was 6.8% with capecitabine and 4.8% with S-1. Grade 3–4 nonhaematologic toxicities were: asthenia (9.1% with capecitabine vs 7.1% with S-1), anorexia (6.8 vs 9.5%), diarrhoea (2.3 vs 0%), and hand–foot syndrome (6.8 vs 0%). Both capecitabine and S-1 monotherapies were active and tolerable as first-line treatment for elderly patients with AGC

    Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond.

    Get PDF
    Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of ‘self-eating’ where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis
    corecore