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Abstract
In the present paper, we aim to specify a p-adic continuous function for an odd prime
inside a p-adic q-analog of the extended Dedekind-type sums of higher order
according to extended q-Euler polynomials (or weighted q-Euler polynomials) which
is derived from a fermionic p-adic q-deformed integral on Zp.
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1 Introduction
Let p be chosen as a fixed odd prime number. In this paper Zp, Qp, C and Cp will, respec-
tively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, the
complex numbers, and the completion of an algebraic closure of Qp.

Let vp be a normalized exponential valuation of Cp by

|p|p = p–vp(p) =

p

.

When one talks of a q-extension, q is variously considered as an indeterminate, a com-
plex number q ∈ C or a p-adic number q ∈ Cp. If q ∈ C, we assume that |q| < . If q ∈ Cp,
we assume that | – q|p <  (see, for details, [–]).

The following measure is defined by Kim: for any positive integer n and  ≤ a < pn,

μq
(
a + pn

Zp
)

= (–q)a ( + q)
 + qpn ,

which can be extended to a measure on Zp (for details, see [–]).
Extended q-Euler polynomials (also known as weighted q-Euler polynomials) are de-

fined by

Ẽ(α)
n,q(x) =

∫

Zp

(
 – qα(x+ξ )

 – qα

)n

dμq(ξ ) ()

© 2015 Araci and Özer. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194702784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13662-015-0610-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0610-8&domain=pdf
mailto:mtsrkn@hotmail.com


Araci and Özer Advances in Difference Equations  (2015) 2015:272 Page 2 of 5

for n ∈ Z+ := {, , , , . . .}. We note that

lim
q→

Ẽ(α)
n,q(x) = En(x),

where En(x) are nth Euler polynomials, which are defined by the rule

∞∑

n=

En(x)
tn

n!
= etx 

et + 
, |t| < π

(for details, see []). In the case x =  in (), then we have Ẽ(α)
n,q() := Ẽ(α)

n,q , which are called
extended q-Euler numbers (or weighted q-Euler numbers).

Extended q-Euler numbers and polynomials have the following explicit formulas:

Ẽ(α)
n,q =

 + q
( – qα)n

n∑

l=

(
n
l

)
(–)l 

 + qαl+ , ()

Ẽ(α)
n,q(x) =

 + q
( – qα)n

n∑

l=

(
n
l

)
(–)l qαlx

 + qαl+ , ()

Ẽ(α)
n,q(x) =

n∑

l=

(
n
l

)
qαlxẼ(α)

l,q

(
 – qαx

 – qα

)n–l

. ()

Moreover, for d ∈N with d ≡  (mod ),

Ẽ(α)
n,q(x) =

(
 + q
 + qd

)(
 – qαd

 – qα

)n d–∑

a=

(–)aẼ(α)
n,q

(
x + a

d

)
; ()

see [].
For any positive integer h, k and m, Dedekind-type DC sums are given by Kim in [, ],

and [] as follows:

Sm(h, k) =
k–∑

M=

(–)M– M
k

Em

(
hM

k

)
,

where Em(x) are mth periodic Euler functions.
Kim [] derived some interesting properties for Dedekind-type DC sums and consid-

ered a p-adic continuous function for an odd prime number to contain a p-adic q-analog
of the higher order Dedekind-type DC sums kmSm+(h, k). Simsek [] gave a q-analog of
Dedekind-type sums and derived interesting properties. Furthermore, Araci et al. stud-
ied Dedekind-type sums in accordance with modified q-Euler polynomials with weight
α [], modified q-Genocchi polynomials with weight α [], and weighted q-Genocchi
polynomials [].

Recently, weighted q-Bernoulli numbers and polynomials were first defined by Kim in
[]. Next, many mathematicians, by utilizing Kim’s paper [], have introduced various
generalization of some known special polynomials such as Bernoulli polynomials, Euler
polynomials, Genocchi polynomials, and so on, which are called weighted q-Bernoulli,
weighted q-Euler, and weighted q-Genocchi polynomials in [, , –].
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By the same motivation of the above knowledge, we give a weighted p-adic q-analog of
the higher order Dedekind-type DC sums kmSm+(h, k) which are derived from a fermionic
p-adic q-deformed integral on Zp.

2 Extended q-Dedekind-type sums associated with extended q-Euler
polynomials

Let w be the Teichmüller character (mod p). For x ∈ Z
∗
p := Zp/pZp, set

〈x : q〉 = w–(x)
(

 – qx

 – q

)
.

Let a and N be positive integers with (p, a) =  and p | N . We now consider

C̃(α)
q

(
s, a, N : qN)

= w–(a)
〈
a : qα

〉s
∞∑

j=

(
s
j

)
qαaj

(
 – qαN

 – qαa

)j

Ẽ(α)
j,qN .

In particular, if m +  ≡  (mod p – ), then

C̃(α)
q

(
m, a, N : qN)

=
(

 – qαa

 – qα

)m m∑

j=

(
m
j

)
qαajẼ(α)

j,qN

(
 – qαN

 – qαa

)j

=
(

 – qαN

 – qα

)m ∫

Zp

(
 – qαN(ξ+ a

N )

 – qαN

)m

dμqN (ξ ).

Thus, C̃(α)
q (m, a, N : qN ) is a continuous p-adic extension of

(
 – qαN

 – qα

)m

Ẽ(α)
m,qN

(
a
N

)
.

Let [·] be the Gauss symbol and let {x} = x – [x]. Thus, we are now ready to introduce
the q-analog of the higher order Dedekind-type DC sums J̃ (α)

m,q(h, k : ql) by the rule

J̃ (α)
m,q

(
h, k : ql) =

k–∑

M=

(–)M–
(

 – qαM

 – qαk

)∫

Zp

(
 – qα(lξ+l{ hM

k })

 – qαl

)m

dμql (ξ ).

If m +  ≡  (mod p – ),

(
 – qαk

 – qα

)m+ k–∑

M=

(–)M–
(

 – qαM

 – qαk

)∫

Zp

(
 – qαk(ξ+ hM

k )

 – qαk

)m

dμqk (ξ )

=
k–∑

M=

(–)M–
(

 – qαM

 – qα

)(
 – qαk

 – qα

)m ∫

Zp

(
 – qαk(ξ+ hM

k )

 – qαk

)m

dμqk (ξ ),

where p | k, (hM, p) =  for each M. By (), we easily state the following:

(
 – qαk

 – qα

)m+

J̃ (α)
m,q

(
h, k : qk)

=
k–∑

M=

(
 – qαM

 – qα

)(
 – qαk

 – qα

)m

(–)M–
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×
∫

Zp

(
 – qαk(ξ+ hM

k )

 – qαk

)m

dμqk (ξ )

=
k–∑

M=

(–)M–
(

 – qαM

 – qα

)
C̃(α)

q
(
m, (hM)k : qk), ()

where (hM)k denotes the integer x such that  ≤ x < n and x ≡ α (mod k).
It is not difficult to indicate the following:

∫

Zp

(
 – qα(x+ξ )

 – qα

)k

dμq(ξ )

=
(

 – qαm

 – qα

)k  + q
 + qm

m–∑

i=

(–)i
∫

Zp

(
 – qαm(ξ+ x+i

m )

 – qαm

)k

dμqm (ξ ). ()

On account of () and (), we easily see that

(
 – qαN

 – qα

)m ∫

Zp

(
 – qαN(ξ+ a

N )

 – qαN

)m

dμqN (ξ )

=
 + qN

 + qNp

p–∑

i=

(–)i
(

 – qαNp

 – qα

)m ∫

Zp

(
 – qαpN(ξ+ a+iN

pN )

 – qαpN

)m

dμqpN (ξ ). ()

Because of (), (), and (), we develop the p-adic integration as follows:

C̃(α)
q

(
s, a, N : qN)

=
 + qN

 + qNp

∑

≤i≤p–
a+iN 
= (mod p)

(–)iC̃(α)
q

(
s, (a + iN)pN , pN : qpN)

.

So,

C̃(α)
q

(
m, a, N : qN)

=
(

 – qαN

 – qα

)m ∫

Zp

(
 – qαN(ξ+ a

N )

 – qαN

)m

dμqN (ξ )

–
(

 – qαNp

 – qα

)m ∫

Zp

(
 – qαpN(ξ+ a+iN

pN )

 – qαpN

)m

dμqpN (ξ ),

where (p–a)N denotes the integer x with  ≤ x < N , px ≡ a (mod N) and m is integer with
m +  ≡  (mod p – ). Therefore, we have

k–∑

M=

(–)M–
(

 – qαM

 – qα

)
C̃(α)

q
(
m, hM, k : qk)

=
(

 – qαk

 – qα

)m+

J̃ (α)
m,q

(
h, k : qk) –

(
 – qαk

 – qα

)m+

×
(

 – qαkp

 – qαk

)
J̃ (α)
m,q

((
p–h

)
, k : qpk),

where p � k and p � hm for each M. Thus, we give the following definition, which seems
interesting for further studying the theory of Dedekind sums.
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Definition  Let h, k be positive integer with (h, k) = , p � k. For s ∈ Zp, we define a p-adic
Dedekind-type DC sums as follows:

J̃ (α)
p,q

(
s : h, k : qk) =

k–∑

M=

(–)M–
(

 – qαM

 – qα

)
C̃(α)

q
(
m, hM, k : qk).

As a result of the above definition, we state the following theorem.

Theorem . For m +  ≡  (mod p – ) and (p–a)N denotes the integer x with  ≤ x < N ,
px ≡ a (mod N), then we have

J̃ (α)
p,q

(
s : h, k : qk) =

(
 – qαk

 – qα

)m+

J̃ (α)
m,q

(
h, k : qk)

–
(

 – qαk

 – qα

)m+( – qαkp

 – qαk

)
J̃ (α)
m,q

((
p–h

)
, k : qpk).

In the special case α = , our applications in theory of Dedekind sums resemble Kim’s
results in []. These results seem to be interesting for further studies as in [, ] and [].
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