242 research outputs found

    Cybersecurity Readiness of E-tail Organisations:A Technical Perspective

    Get PDF
    Cybersecurity readiness is a challenging issue for online retail businesses which are losing billions of dollars due to cyber-crimes and a lack of readiness to manage these. Therefore, research into cybersecurity readiness in the online retail industry is needed. Technical tools are the foremost measures of defence against these attacks. This study investigates cybersecurity readiness from the technical perspective in some UK online retailers. This research adopted a qualitative case study approach with semi-structured interviews for collecting data. A total of 15 interviews were conducted with an online retail company’s staff and management who had responsibility for managing cybersecurity. A thematic analysis method was used to analyse the qualitative data. The research findings show that the company is facing internal and external threats to their information systems and their technical defences are not very effective at present. The company should consider investing more resources in the technical controls to prevent these attacks

    Results of NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia

    Get PDF
    Adults with acute lymphoblastic leukemia (ALL) do worse than children. From 7/2008 to 12/2014, Nordic and Baltic centers treated 1509 consecutive patients aged 1-45 years with Philadelphia chromosome-negative ALL according to the NOPHO ALL2008 without cranial irradiation. Overall, 1022 patients were of age 1-9 years (A), 266 were 10-17 years (B) and 221 were 18-45 years (C). Sixteen patients (three adults) died during induction. All others achieved remission after induction or 1-3 intensive blocks. Subsequently, 45 patients (12 adults) died, 122 patients relapsed (32 adults) with a median time to relapse of 1.6 years and 13 (no adult) developed a second malignancy. Median follow-up time was 4.6 years. Among the three age groups, older patients more often had higher risk ALL due to T-ALL (32%/25%/9%, PPeer reviewe

    Different molecular mechanisms causing 9p21 deletions in acute lymphoblastic leukemia of childhood

    Get PDF
    Deletion of chromosome 9p21 is a crucial event for the development of several cancers including acute lymphoblastic leukemia (ALL). Double strand breaks (DSBs) triggering 9p21 deletions in ALL have been reported to occur at a few defined sites by illegitimate action of the V(D)J recombination activating protein complex. We have cloned 23 breakpoint junctions for a total of 46 breakpoints in 17 childhood ALL (9 B- and 8 T-lineages) showing different size deletions at one or both homologous chromosomes 9 to investigate which particular sequences make the region susceptible to interstitial deletion. We found that half of 9p21 deletion breakpoints were mediated by ectopic V(D)J recombination mechanisms whereas the remaining half were associated to repeated sequences, including some with potential for non-B DNA structure formation. Other mechanisms, such as microhomology-mediated repair, that are common in other cancers, play only a very minor role in ALL. Nucleotide insertions at breakpoint junctions and microinversions flanking the breakpoints have been detected at 20/23 and 2/23 breakpoint junctions, respectively, both in the presence of recombination signal sequence (RSS)-like sequences and of other unspecific sequences. The majority of breakpoints were unique except for two cases, both T-ALL, showing identical deletions. Four of the 46 breakpoints coincide with those reported in other cases, thus confirming the presence of recurrent deletion hotspots. Among the six cases with heterozygous 9p deletions, we found that the remaining CDKN2A and CDKN2B alleles were hypermethylated at CpG islands

    Rationale for combination therapy of chronic myelogenous leukaemia with imatinib and irradiation or alkylating agents: implications for pretransplant conditioning

    Get PDF
    The tyrosine kinase activity of the BCR–ABL oncoprotein results in reduced apoptosis and thus prolongs survival of chronic myelogenous leukaemia cells. The tyrosine kinase inhibitor imatinib (formerly STI571) was reported to selectively suppress the proliferation of BCR–ABL-positive cells. Assuming that imatinib could be included in pretransplantation conditioning therapies, we tested whether combinations of imatinib and γ-irradiation or alkylating agents such as busulfan or treosulfan would display synergistic activity in BCR–ABL-positive chronic myelogenous leukaemia BV173 and EM-3 cell lines. Further, primary cells of untreated chronic myelogenous leukaemia patients were assayed for colony forming ability under combination therapy with imatinib. Additionally, the cytotoxic effect of these combinations on BCR–ABL-negative cells was investigated. In the cell lines a tetrazolium based MTT assay was used to quantify growth inhibition after exposure to cytotoxic drugs alone or to combinations with imatinib. Irradiation was applied prior to exposure to imatinib. Interaction of drugs was analysed using the median-effect method of Chou and Talalay. The combination index was calculated according to the classic isobologram equation. The combination imatinib + γ-irradiation proved to be significantly synergistic over a broad range of cell growth inhibition levels in both BCR–ABL-positive cell lines and produced the strongest reduction in primary chronic myelogenous leukaemia colony-forming progenitor cells. Combinations of imatinib + busulfan and imatinib + treosulfan showed merely additive to antagonistic effects. Imatinib did not potentiate the effects of irradiation or cytotoxic agents in BCR–ABL-negative cells. Our data provide the basis to further develop imatinib-containing conditioning therapies for stem cell transplantation in chronic myelogenous leukaemia

    Alternative Ii-independent antigen-processing pathway in leukemic blasts involves TAP-dependent peptide loading of HLA class II complexes

    Get PDF
    During HLA class II synthesis in antigen-presenting cells, the invariant chain (Ii) not only stabilizes HLA class II complexes in the endoplasmic reticulum, but also mediates their transport to specialized lysosomal antigen-loading compartments termed MIICs. This study explores an alternative HLA class II presentation pathway in leukemic blasts that involves proteasome and transporter associated with antigen processing (TAP)-dependent peptide loading. Although HLA-DR did associate with Ii, Ii silencing in the human class II-associated invariant chain peptide (CLIP)-negative KG-1 myeloid leukemic cell line did not affect total and plasma membrane expression levels of HLA-DR, as determined by western blotting and flow cytometry. Since HLA-DR expression does require peptide binding, we examined the role of endogenous antigen-processing machinery in HLA-DR presentation by CLIP− leukemic blasts. The suppression of proteasome and TAP function using various inhibitors resulted in decreased HLA-DR levels in both CLIP− KG-1 and ME-1 blasts. Simultaneous inhibition of TAP and Ii completely down-modulated the expression of HLA-DR, demonstrating that together these molecules form the key mediators of HLA class II antigen presentation in leukemic blasts. By the use of a proteasome- and TAP-dependent pathway for HLA class II antigen presentation, CLIP− leukemic blasts might be able to present a broad range of endogenous leukemia-associated peptides via HLA class II to activate leukemia-specific CD4+ T cells

    Identification of a Novel Topoisomerase Inhibitor Effective in Cells Overexpressing Drug Efflux Transporters

    Get PDF
    BACKGROUND:Natural product structures have high chemical diversity and are attractive as lead structures for discovery of new drugs. One of the disease areas where natural products are most frequently used as therapeutics is oncology. METHOD AND FINDINGS:A library of natural products (NCI Natural Product set) was screened for compounds that induce apoptosis of HCT116 colon carcinoma cells using an assay that measures an endogenous caspase-cleavage product. One of the apoptosis-inducing compounds identified in the screen was thaspine (taspine), an alkaloid from the South American tree Croton lechleri. The cortex of this tree is used for medicinal purposes by tribes in the Amazonas basin. Thaspine was found to induce conformational activation of the pro-apoptotic proteins Bak and Bax, mitochondrial cytochrome c release and mitochondrial membrane permeabilization in HCT116 cells. Analysis of the gene expression signature of thaspine-treated cells suggested that thaspine is a topoisomerase inhibitor. Inhibition of both topoisomerase I and II was observed using in vitro assays, and thaspine was found to have a reduced cytotoxic effect on a cell line with a mutated topoisomerase II enzyme. Interestingly, in contrast to the topoisomerase II inhibitors doxorubicin, etoposide and mitoxantrone, thaspine was cytotoxic to cell lines overexpressing the PgP or MRP drug efflux transporters. We finally show that thaspine induces wide-spread apoptosis in colon carcinoma multicellular spheroids and that apoptosis is induced in two xenograft mouse models in vivo. CONCLUSIONS:The alkaloid thaspine from the cortex of Croton lechleri is a dual topoisomerase inhibitor effective in cells overexpressing drug efflux transporters and induces wide-spread apoptosis in multicellular spheroids

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi
    corecore