235 research outputs found
Papillomavirus pseudovirions packaged with the L2 gene induce cross-neutralizing antibodies
<p>Abstract</p> <p>Background</p> <p>Current vaccines against HPVs are constituted of L1 protein self-assembled into virus-like particles (VLPs) and they have been shown to protect against natural HPV16 and HPV18 infections and associated lesions. In addition, limited cross-protection has been observed against closely related types. Immunization with L2 protein in animal models has been shown to provide cross-protection against distant papillomavirus types, suggesting that the L2 protein contains cross-neutralizing epitopes. However, vaccination with L2 protein or L2 peptides does not induce high titers of anti-L2 antibodies. In order to develop a vaccine with the potential to protect against other high-risk HPV types, we have produced HPV58 pseudovirions encoding the HPV31 L2 protein and compared their capacity to induce cross-neutralizing antibodies with that of HPV L1 and HPV L1/L2 VLPs.</p> <p>Methods</p> <p>The titers of neutralizing antibodies against HPV16, HPV18, HPV31 and HPV58 induced in Balb/c mice were compared after immunization with L2-containing vaccines.</p> <p>Results</p> <p>Low titers of cross-neutralizing antibodies were detected in mice when immunized with L1/L2 VLPs, and the highest levels of cross-neutralizing antibodies were observed in mice immunized with HPV 58 L1/L2 pseudovirions encoding the HPV 31 L2 protein.</p> <p>Conclusions</p> <p>The results obtained indicate that high levels of cross-neutralizing antibodies are only observed after immunization with pseudovirions encoding the L2 protein. HPV pseudovirions thus represent a possible new strategy for the generation of a broad-spectrum vaccine to protect against high-risk HPVs and associated neoplasia.</p
Rapid Microbiological Testing: Monitoring the Development of Bacterial Stress
The ability to respond to adverse environments effectively along with the ability to reproduce are sine qua non conditions for all sustainable cellular forms of life. Given the availability of an appropriate sensing modality, the ubiquity and immediacy of the stress response could form the basis for a new approach for rapid biological testing. We have found that measuring the dielectric permittivity of a cellular suspension, an easily measurable electronic property, is an effective way to monitor the response of bacterial cells to adverse conditions continuously. The dielectric permittivity of susceptible and resistant strains of Escherichia coli and Staphylococcus aureus, treated with gentamicin and vancomycin, were measured directly using differential impedance sensing methods and expressed as the Normalized Impedance Response (NIR). These same strains were also heat-shocked and chemically stressed with Triton X-100 or H2O2. The NIR profiles obtained for antibiotic-treated susceptible organisms showed a strong and continuous decrease in value. In addition, the intensity of the NIR value decrease for susceptible cells varied in proportion to the amount of antibiotic added. Qualitatively similar profiles were found for the chemically treated and heat-shocked bacteria. In contrast, antibiotic-resistant cells showed no change in the NIR values in the presence of the drug to which it is resistant. The data presented here show that changes in the dielectric permittivity of a cell suspension are directly correlated with the development of a stress response as well as bacterial recovery from stressful conditions. The availability of a practical sensing modality capable of monitoring changes in the dielectric properties of stressed cells could have wide applications in areas ranging from the detection of bacterial infections in clinical specimens to antibiotic susceptibility testing and drug discovery
Networks link antigenic and receptor-binding sites of influenza hemagglutinin: Mechanistic insight into fitter strain propagation
Influenza viral passaging through pre-vaccinated mice shows that emergent antigenic site mutations on the viral hemagglutinin (HA) impact host receptor-binding affinity and, therefore, the evolution of fitter influenza strains. To understand this phenomenon, we computed the Significant Interactions Network (SIN) for each residue and mapped the networks of antigenic site residues on a representative H1N1 HA. Specific antigenic site residues are ‘linked’ to receptor-binding site (RBS) residues via their SIN and mutations within “RBS-linked” antigenic residues can significantly influence receptor-binding affinity by impacting the SIN of key RBS residues. In contrast, other antigenic site residues do not have such “RBS-links” and do not impact receptor-binding affinity upon mutation. Thus, a potential mechanism emerges for how immunologic pressure on RBS-linked antigenic residues can contribute to evolution of fitter influenza strains by modulating the host receptor-binding affinity
A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia
BACKGROUND: Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. METHODS: In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. RESULTS: To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. CONCLUSION: A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this array. The final prototype overcame also the problem of generating grating lobes at unwanted locations by tapering the array elements
Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 hemagglutinin in mice
BACKGROUND: Highly pathogenic avian H5N1 influenza virus is a major public health concern. Given the lack of effective vaccine and recent evidence of antiviral drug resistance in some isolates, alternative strategies for containment of a possible future pandemic are needed. Humanized monoclonal antibodies (mAbs) that neutralize H5N1 virus could be used as prophylaxis and treatment to aid in the containment of such a pandemic. METHODS: Neutralizing mAbs against H5 hemagglutinin were humanized and introduced into C57BL/6 mice (1, 5, or 10 mg/kg bodyweight) one day prior to-, one day post- and three days post-lethal challenge with H5N1 A/Vietnam/1203/04 virus. Efficacy was determined by observation of weight loss as well as survival. RESULTS: Two mAbs neutralizing for antigenically variant H5N1 viruses, A/Vietnam/1203/04 and A/Hong Kong/213/03 were identified and humanized without loss of specificity. Both antibodies exhibited prophylactic efficacy in mice, however, VN04-2-huG1 performed better requiring only 1 mg/kg bodyweight for complete protection. When used to treat infection VN04-2-huG1 was also completely protective, even when introduced three days post infection, although higher dose of antibody was required. CONCLUSION: Prophylaxis and treatment using neutralizing humanized mAbs is efficacious against lethal challenge with A/Vietnam/1203/04, providing proof of principle for the use of passive antibody therapy as a containment option in the event of pandemic influenza
QRS pattern and improvement in right and left ventricular function after cardiac resynchronization therapy: a radionuclide study
Predicting response to cardiac resynchronization therapy (CRT) remains a challenge. We evaluated the role of baseline QRS pattern to predict response in terms of improvement in biventricular ejection fraction (EF)
Cross-Protective Potential of a Novel Monoclonal Antibody Directed against Antigenic Site B of the Hemagglutinin of Influenza A Viruses
The hemagglutinin (HA) of influenza A viruses has been classified into sixteen distinct subtypes (H1–H16) to date. The HA subtypes of influenza A viruses are principally defined as serotypes determined by neutralization or hemagglutination inhibition tests using polyclonal antisera to the respective HA subtypes, which have little cross-reactivity to the other HA subtypes. Thus, it is generally believed that the neutralizing antibodies are not broadly cross-reactive among HA subtypes. In this study, we generated a novel monoclonal antibody (MAb) specific to HA, designated MAb S139/1, which showed heterosubtypic cross-reactive neutralization and hemagglutination inhibition of influenza A viruses. This MAb was found to have broad reactivity to many other viruses (H1, H2, H3, H5, H9, and H13 subtypes) in enzyme-linked immunosorbent assays. We further found that MAb S139/1 showed neutralization and hemagglutination-inhibition activities against particular strains of H1, H2, H3, and H13 subtypes of influenza A viruses. Mutant viruses that escaped neutralization by MAb S139/1 were selected from the A/Aichi/2/68 (H3N2), A/Adachi/2/57 (H2N2), and A/WSN/33 (H1N1) strains, and sequence analysis of the HA genes of these escape mutants revealed amino acid substitutions at positions 156, 158, and 193 (H3 numbering). A molecular modeling study showed that these amino acids were located on the globular head of the HA and formed a novel conformational epitope adjacent to the receptor-binding domain of HA. Furthermore, passive immunization of mice with MAb S139/1 provided heterosubtypic protection. These results demonstrate that MAb S139/1 binds to a common antigenic site shared among a variety of HA subtypes and neutralizes viral infectivity in vitro and in vivo by affecting viral attachment to cells. The present study supports the notion that cross-reactive antibodies play some roles in heterosubtypic immunity against influenza A virus infection, and underscores the potential therapeutic utility of cross-reactive antibodies against influenza
Detection of hCG Responsive Expression of the Steroidogenic Acute Regulatory Protein in Mouse Leydig Cells
The steroidogenic acute regulatory (StAR) protein, a novel mitochondrial protein, is involved in the regulation of steroid hormone biosynthesis through its mediation of the intramitochondrial transport of the steroid substrate, cholesterol, to the cytochrome P450 cholesterol side chain cleavage (P450scc) enzyme. The expression of StAR protein is regulated by cAMP-dependent signaling in steroidogenic cells. During the course of our studies in mouse Leydig cells, we employ several methods for studying the regulation of StAR protein expression by human chorionic gonadotropin (hCG). A sensitive quantitative reverse transcription and polymerase chain reaction (RT-PCR) was utilized for determining StAR mRNA expression. Stimulation of mLTC-1 mouse Leydig tumor cells with hCG resulted in the coordinate regulation of StAR mRNA expression and progesterone accumulation in a time-response manner. The validity and accuracy of quantitative RT-PCR results in mLTC-1 cells were verified by a competitive PCR approach and were further confirmed in primary cultures of isolated mouse Leydig cells. Immunoblotting studies demonstrated an increase in the levels of the StAR protein in a concentration dependent manner following hCG stimulation in mLTC-1 cells. Northern hybridization analysis revealed three StAR transcripts, all of which were of sufficient size to encode functional StAR protein, and which were coordinately expressed in response to hCG. Collectively, the experimental approaches utilized in the present investigation allow for the demonstration and characterization of hCG mediated regulation of StAR mRNA and StAR protein expression in mouse Leydig cells
Uncoupling proteins, dietary fat and the metabolic syndrome
There has been intense interest in defining the functions of UCP2 and UCP3 during the nine years since the cloning of these UCP1 homologues. Current data suggest that both UCP2 and UCP3 proteins share some features with UCP1, such as the ability to reduce mitochondrial membrane potential, but they also have distinctly different physiological roles. Human genetic studies consistently demonstrate the effect of UCP2 alleles on type-2 diabetes. Less clear is whether UCP2 alleles influence body weight or body mass index (BMI) with many studies showing a positive effect while others do not. There is strong evidence that both UCP2 and UCP3 protect against mitochondrial oxidative damage by reducing the production of reactive oxygen species. The evidence that UCP2 protein is a negative regulator of insulin secretion by pancreatic β-cells is also strong: increased UCP2 decreases glucose stimulated insulin secretion ultimately leading to β-cell dysfunction. UCP2 is also neuroprotective, reducing oxidative stress in neurons. UCP3 may also transport fatty acids out of mitochondria thereby protecting the mitochondria from fatty acid anions or peroxides. Current data suggest that UCP2 plays a role in the metabolic syndrome through down-regulation of insulin secretion and development of type-2 diabetes. However, UCP2 may protect against atherosclerosis through reduction of oxidative stress and both UCP2 and UCP3 may protect against obesity. Thus, these UCP1 homologues may both contribute to and protect from the markers of the metabolic syndrome
- …