5,878 research outputs found

    Effects of single-trial averaging on spatial extent of brain activation detected by fMRI are subject and task dependent

    Get PDF

    Defects in half-metals and finite temperature

    Get PDF
    The influence of intrinsic defects in half-metals is calculated in the case of NiMnSb. Of the 14 cases of intrinsic defects, five affect the half-metallic properties. They are energetically very unlikely to occur. Circumstances are discussed under which defects may even have a beneficial effect on the spin polarization of the conduction electrons. Non-intrinsic defects, like deliberate doping by rare-earth atoms, as well as the effect of nano-structured contacts may influence the magnon spectrum, improving the behaviour at finite temperature.</p

    Correcting pervasive errors in RNA crystallography through enumerative structure prediction

    Full text link
    Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average Rfree factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models

    The development of common data elements for a multi-institute prostate cancer tissue bank: The Cooperative Prostate Cancer Tissue Resource (CPCTR) experience

    Get PDF
    BACKGROUND: The Cooperative Prostate Cancer Tissue Resource (CPCTR) is a consortium of four geographically dispersed institutions that are funded by the U.S. National Cancer Institute (NCI) to provide clinically annotated prostate cancer tissue samples to researchers. To facilitate this effort, it was critical to arrive at agreed upon common data elements (CDEs) that could be used to collect demographic, pathologic, treatment and clinical outcome data. METHODS: The CPCTR investigators convened a CDE curation subcommittee to develop and implement CDEs for the annotation of collected prostate tissues. The draft CDEs were refined and progressively annotated to make them ISO 11179 compliant. The CDEs were implemented in the CPCTR database and tested using software query tools developed by the investigators. RESULTS: By collaborative consensus the CPCTR CDE subcommittee developed 145 data elements to annotate the tissue samples collected. These included for each case: 1) demographic data, 2) clinical history, 3) pathology specimen level elements to describe the staging, grading and other characteristics of individual surgical pathology cases, 4) tissue block level annotation critical to managing a virtual inventory of cases and facilitating case selection, and 5) clinical outcome data including treatment, recurrence and vital status. These elements have been used successfully to respond to over 60 requests by end-users for tissue, including paraffin blocks from cases with 5 to 10 years of follow up, tissue microarrays (TMAs), as well as frozen tissue collected prospectively for genomic profiling and genetic studies. The CPCTR CDEs have been fully implemented in two major tissue banks and have been shared with dozens of other tissue banking efforts. CONCLUSION: The freely available CDEs developed by the CPCTR are robust, based on "best practices" for tissue resources, and are ISO 11179 compliant. The process for CDE development described in this manuscript provides a framework model for other organ sites and has been used as a model for breast and melanoma tissue banking efforts

    Construction loads using a shoring-clearing-striking process

    Full text link
    [EN] This paper presents the results of tests carried out during the construction of a block of flats with reinforced concrete slab floors in Madrid, Spain, using the shoring, clearing and striking (SCS) process. Loads on shores were recorded during the different construction stages of Floor Slabs 1 to 6. The experimental results were used to analyse load transmission between slabs and shores during the construction of the building. The results of the analysis showed that slab-shore load transmission differed according to the position of the span analysed and also that variations in the construction process had a significant effect on the expected loads. The paper includes the evolving calculation developed by a non-linear numerical model to simulate the building s behaviour during the different construction phases and variations in the concrete properties with time. The experimental and numerical FEM results were compared with those obtained applying simplified methods that consider the real stiffness of the shoring.Gasch, I.; Alvarado Vargas, YA.; Calderón García, PA.; Ivorra Chorro, S. (2014). Construction loads using a shoring-clearing-striking process. Proceedings of the ICE - Structures and Buildings. 167(4):217-229. doi:10.1680/stbu.12.00006S217229167

    Night Heart Rate Variability and Particulate Exposures among Boilermaker Construction Workers

    Get PDF
    Background: Although studies have documented the association between heart rate variability (HRV) and ambient particulate exposures, the association between HRV, especially at night, and metal-rich, occupational particulate exposures remains unclear. Objective: Our goal in this study was to investigate the association between long-duration HRV, including nighttime HRV, and occupational PM2.5 exposures. Methods: We used 24-hr ambulatory electrocardiograms (ECGs) to monitor 36 male boilermaker welders (mean age of 41 years) over a workday and nonworkday. ECGs were analyzed for HRV in the time domain; rMSSD (square root of the mean squared differences of successive intervals), SDNN (SD of normal-to-normal intervals over entire recording), and SDNNi (SDNN for all 5-min segments) were summarized over 24-hr, day (0730–2130 hours), and night (0000–0700 hours) periods. PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) exposures were monitored over the workday, and 8-hr time-weighted average concentrations were calculated. We used linear regression to assess the associations between HRV and workday particulate exposures. Matched measurements from a nonworkday were used to control for individual cardiac risk factors. Results: Mean (± SD) PM2.5 exposure was 0.73 ± 0.50 mg/m3 and ranged from 0.04 to 2.70 mg/m3. We observed a consistent inverse exposure–response relationship, with a decrease in all HRV measures with increased PM2.5 exposure. However, the decrease was most pronounced at night, where a 1-mg/m3 increase in PM2.5 was associated with a change of −8.32 [95% confidence interval (CI), −16.29 to −0.35] msec nighttime rMSSD, −14.77 (95% CI, −31.52 to 1.97) msec nighttime SDNN, and −8.37 (95% CI, −17.93 to 1.20) msec nighttime SDNNi, after adjusting for nonworking nighttime HRV, age, and smoking. Conclusion: Metal-rich particulate exposures were associated with decreased long-duration HRV, especially at night. Further research is needed to elucidate which particulate metal constituent is responsible for decreased HRV

    Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides

    Full text link
    The in-plane anisotropy of the electrical resistivity across the coupled orthorhombic and magnetic transitions of the iron pnictides has been extensively studied in the parent and electron-doped compounds. All these studies universally show that the resistivity ρa\rho_{a} across the long orthorhombic axis aOa_{O} - along which the spins couple antiferromagnetically below the magnetic transition temperature - is smaller than the resistivity ρb\rho_{b} of the short orthorhombic axis bOb_{O}, i. e. ρa<ρb\rho_{a}<\rho_{b}. Here we report that in the hole-doped compounds Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2}, as the doping level increases, the resistivity anisotropy initially becomes vanishingly small, and eventually changes sign for sufficiently large doping, i. e. ρb<ρa\rho_{b}<\rho_{a}. This observation is in agreement with a recent theoretical prediction that considers the anisotropic scattering of electrons by spin-fluctuations in the orthorhombic/nematic state.Comment: This paper has been replaced by the new version offering new explanation of the experimental results first reported her

    Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor

    Get PDF
    A novel high-throughput label-free resonant waveguide grating (RWG) imager biosensor, the Epic® BenchTop (BT), was utilized to determine the dependence of cell spreading kinetics on the average surface density (vRGD) of integrin ligand RGD-motifs. vRGD was tuned over four orders of magnitude by co-adsorbing the biologically inactive PLL-g-PEG and the RGD-functionalized PLL-g-PEG-RGD synthetic copolymers from their mixed solutions onto the sensor surface. Using highly adherent human cervical tumor (HeLa) cells as a model system, cell adhesion kinetic data of unprecedented quality were obtained. Spreading kinetics were fitted with the logistic equation to obtain the spreading rate constant (r) and the maximum biosensor response (Δλmax), which is assumed to be directly proportional to the maximum spread contact area (Amax). r was found to be independent of the surface density of integrin ligands. In contrast, Δλmax increased with increasing RGD surface density until saturation at high densities. Interpreting the latter behavior with a simple kinetic mass action model, a 2D dissociation constant of 1753 ± 243 μm−2 (corresponding to a 3D dissociation constant of ~30 μM) was obtained for the binding between RGD-specific integrins embedded in the cell membrane and PLL-g-PEG-RGD. All of these results were obtained completely noninvasively without using any labels

    Consistent model of magnetism in ferropnictides

    Get PDF
    The discovery of superconductivity in LaFeAsO introduced the ferropnictides as a major new class of superconducting compounds with critical temperatures second only to cuprates. The presence of magnetic iron makes ferropnictides radically different from cuprates. Antiferromagnetism of the parent compounds strongly suggests that superconductivity and magnetism are closely related. However, the character of magnetic interactions and spin fluctuations in ferropnictides, in spite of vigorous efforts, has until now resisted understanding within any conventional model of magnetism. Here we show that the most puzzling features can be naturally reconciled within a rather simple effective spin model with biquadratic interactions, which is consistent with electronic structure calculations. By going beyond the Heisenberg model, this description explains numerous experimentally observed properties, including the peculiarities of the spin wave spectrum, thin domain walls, crossover from first to second order phase transition under doping in some compounds, and offers new insight in the occurrence of the nematic phase above the antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex
    corecore