92 research outputs found

    Rheumatoid arthritis and the role of oral bacteria

    Get PDF
    Rheumatoid arthritis (RA) and periodontal disease (PD) have shown similar physiopathologic mechanisms such as chronic inflammation with adjacent bone resorption in an immunogenetically susceptible host; however, PD has a well-recognized bacterial etiology while the cause of RA is unclear. Some reports have indicated that an infectious agent in a susceptible host could be one possible trigger factor for RA, and it has been suggested that oral microorganisms, specialty periodontal bacteria could be the infectious agent (mainly Porphyromonas gingivalis). It has been reported that PD is more frequent and more severe in patients with RA, suggesting a positive association between both diseases. There have been reports regarding the detection of antibodies against periodontal bacteria while other studies have identified periodontal bacterial DNA in serum and synovial fluid of RA patients and have explored the possible pathways of transport of periodontal bacterial DNA. In conclusion, there is no question that RA and PD have pathologic features in common and there is strong evidence of an association between both diseases, but further studies, including experimental models, are needed to demonstrate the arthritogenicity of oral microorganisms

    Urinary Proteomics to Support Diagnosis of Stroke

    Get PDF
    Accurate diagnosis in suspected ischaemic stroke can be difficult. We explored the urinary proteome in patients with stroke (n = 69), compared to controls (n = 33), and developed a biomarker model for the diagnosis of stroke. We performed capillary electrophoresis online coupled to micro-time-of-flight mass spectrometry. Potentially disease-specific peptides were identified and a classifier based on these was generated using support vector machine-based software. Candidate biomarkers were sequenced by liquid chromatography-tandem mass spectrometry. We developed two biomarker-based classifiers, employing 14 biomarkers (nominal p-value <0.004) or 35 biomarkers (nominal p-value <0.01). When tested on a blinded test set of 47 independent samples, the classification factor was significantly different between groups; for the 35 biomarker model, median value of the classifier was 0.49 (−0.30 to 1.25) in cases compared to −1.04 (IQR −1.86 to −0.09) in controls, p<0.001. The 35 biomarker classifier gave sensitivity of 56%, specificity was 93% and the AUC on ROC analysis was 0.86. This study supports the potential for urinary proteomic biomarker models to assist with the diagnosis of acute stroke in those with mild symptoms. We now plan to refine further and explore the clinical utility of such a test in large prospective clinical trials

    A Role for SKN-1/Nrf in Pathogen Resistance and Immunosenescence in Caenorhabditis elegans

    Get PDF
    A proper immune response ensures survival in a hostile environment and promotes longevity. Recent evidence indicates that innate immunity, beyond antimicrobial effectors, also relies on host-defensive mechanisms. The Caenorhabditis elegans transcription factor SKN-1 regulates xenobiotic and oxidative stress responses and contributes to longevity, however, its role in immune defense is unknown. Here we show that SKN-1 is required for C. elegans pathogen resistance against both Gram-negative Pseudomonas aeruginosa and Gram-positive Enterococcus faecalis bacteria. Exposure to P. aeruginosa leads to SKN-1 accumulation in intestinal nuclei and transcriptional activation of two SKN-1 target genes, gcs-1 and gst-4. Both the Toll/IL-1 Receptor domain protein TIR-1 and the p38 MAPK PMK-1 are required for SKN-1 activation by PA14 exposure. We demonstrate an early onset of immunosenescence with a concomitant age-dependent decline in SKN-1-dependent target gene activation, and a requirement of SKN-1 to enhance pathogen resistance in response to longevity-promoting interventions, such as reduced insulin/IGF-like signaling and preconditioning H2O2 treatment. Finally, we find that wdr-23(RNAi)-mediated constitutive SKN-1 activation results in excessive transcription of target genes, confers oxidative stress tolerance, but impairs pathogen resistance. Our findings identify SKN-1 as a novel regulator of innate immunity, suggests its involvement in immunosenescence and provide an important crosstalk between pathogenic stress signaling and the xenobiotic/oxidative stress response

    Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke.

    Get PDF
    OBJECTIVE: For 3,670 stroke patients from the United Kingdom, United States, Australia, Belgium, and Italy, we performed a genome-wide meta-analysis of white matter hyperintensity volumes (WMHV) on data imputed to the 1000 Genomes reference dataset to provide insights into disease mechanisms. METHODS: We first sought to identify genetic associations with white matter hyperintensities in a stroke population, and then examined whether genetic loci previously linked to WMHV in community populations are also associated in stroke patients. Having established that genetic associations are shared between the 2 populations, we performed a meta-analysis testing which associations with WMHV in stroke-free populations are associated overall when combined with stroke populations. RESULTS: There were no associations at genome-wide significance with WMHV in stroke patients. All previously reported genome-wide significant associations with WMHV in community populations shared direction of effect in stroke patients. In a meta-analysis of the genome-wide significant and suggestive loci (p < 5 × 10(-6)) from community populations (15 single nucleotide polymorphisms in total) and from stroke patients, 6 independent loci were associated with WMHV in both populations. Four of these are novel associations at the genome-wide level (rs72934505 [NBEAL1], p = 2.2 × 10(-8); rs941898 [EVL], p = 4.0 × 10(-8); rs962888 [C1QL1], p = 1.1 × 10(-8); rs9515201 [COL4A2], p = 6.9 × 10(-9)). CONCLUSIONS: Genetic associations with WMHV are shared in otherwise healthy individuals and patients with stroke, indicating common genetic susceptibility in cerebral small vessel disease.Funding for collection, genotyping, and analysis of stroke samples was provided by Wellcome Trust Case Control Consortium-2, a functional genomics grant from the Wellcome Trust (DNA-Lacunar), the Stroke Association (DNA-lacunar), the Intramural Research Program of National Institute of Ageing (Massachusetts General Hospital [MGH] and Ischemic Stroke Genetics Study [ISGS]), National Institute of Neurological Disorders and Stroke (Siblings With Ischemic Stroke Study, ISGS, and MGH), the American Heart Association/Bugher Foundation Centers for Stroke Prevention Research (MGH), Deane Institute for Integrative Study of Atrial Fibrillation and Stroke (MGH), National Health and Medical Research Council (Australian Stroke Genetics Collaborative), and Italian Ministry of Health (Milan). Additional support for sample collection came from the Medical Research Council, National Institute of Health Research Biomedical Research Centre and Acute Vascular Imaging Centre (Oxford), Wellcome Trust and Binks Trust (Edinburgh), and Vascular Dementia Research Foundation (Munich). MT is supported by a project grant from the Stroke Association (TSA 2013/01). HSM is supported by an NIHR Senior Investigator award. HSM and SB are supported by the NIHR Cambridge University Hospitals Comprehensive Biomedical Research Centre. VT and RL are supported by grants from FWO Flanders. PR holds NIHR and Wellcome Trust Senior Investigator Awards. PAS is supported by an MRC Fellowship. CML’s research is supported by the National Institute for Health Research Biomedical Research Centre (BRC) based at Guy's and St Thomas' NHS Foundation Trust and King's College London, and the BRC for Mental Health at South London and Maudsley NHS Foundation Trust and King’s College London. This is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.1212/WNL.000000000000226
    corecore