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Abstract The descending process of a sphere rolling and/or
sliding along an inclined slope in a liquid involves interac-
tions between the hydrodynamic forces on the sphere and
the contact forces between the sphere and the plane. In this
study, the descending process of sphere in a liquid was exam-
ined using coupled LBM–DEM technique. The effects of
slope angle, viscosity and friction coefficient on the move-
ment of a sphere were investigated. Two distinct descending
patterns were observed: (a) a stable rolling/sliding movement
along the slope, and (b) a fluctuating pattern along the slope.
Five dimensionless coefficients (Reynolds number (Re), drag
coefficient, lift coefficient, moment coefficient and rolling
coefficient) were used to analyze the observed processes. The
vortex structure in the wake of the sphere gives a lift force
to the sphere, which in turn controls the different descending
patterns. It is found that the generation of a vortex is not only
governed by Re, but also by particle rotation. Relationships
between the forces/moments and the dimensionless coeffi-
cients are established.
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1 Introduction

This study examines the descending process of a sphere on
an inclined slope submerged in a liquid using a micro-scale
fluid–solid interaction numerical model that couples the Lat-
tice Boltzmann method (LBM) for the fluid and the discrete
element method (DEM) for the sphere. Unlike a sphere set-
tling down in a fluid, the descending process observed in this
problem is complex due to the interactions between (a) the
hydrodynamic forces between the sphere and the liquid and
(b) the contact forces between the sphere and the slope. The
numerical model is used to find the underlying fluid–solid
interaction mechanisms of a sphere descending on an inclined
slope under different conditions (slope angle, fluid viscos-
ity, etc.). This process is fundamental in understanding more
complex problems, such as submarine debris flow and salta-
tion of sands in civil and hydraulic engineering. Understand-
ing this simple system may reveal underlying physical mech-
anism, which could help solve related engineering problems.

Carty [1] was the first to study this problem using exper-
iments. The inclined slope was smooth and thus the friction
effect was negligible. By varying the particle Reynold num-
ber from 0.02 to 9000, it was found the drag coefficient versus
Re curve had a trend similar to a sphere settling in an infi-
nite body of fluid (i.e. without a slope, see below) but the
drag coefficient value for a given Re was much larger. Smart
et al. [2] measured the translational and rotational velocities
of a sphere rolling down an inclined plane and developed
a theoretical model including the effect of particle surface
roughness. The model predictions were compared with the
experimental results, which were conducted in very low par-
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ticle Reynolds numbers (Re < 2.2 × 10−4). Unlike the
previous two studies where the surrounding fluid was static,
Prokunin et al. [3] studied a sphere in an upward fluid flow
parallel to the inclined slope to induce a shear flow condi-
tion. Similar to Carty’s results, for a given particle Reynolds
number (30 < Re < 3000), they found that the measured
drag coefficients were larger than those of a sphere settling
in an infinite body of fluid.

More recently, Wardhaugh and Williams [4] conducted
experiments, in which spheres of different materials and
friction coefficients were placed on an inclined slope with
different slope angles immersed in stationary fluids with dif-
ferent viscosities. The experiments produced results with a
large range of particle Reynolds number from 15 to 50,000
and the effects of slope angle and friction as well as rotation
were also studied. When a sphere rolled down an inclined
wall, the relationship between drag coefficient and particle
Reynolds number was similar to that obtained by Carty [1].
When particle slipping (at large slope angle) was observed,
the measured drag coefficients is smaller than those cases
which experience only rolling. This is an important finding,
which will be discussed in this paper.

Earlier studies on the sphere–wall interaction problem
considered a sphere moving parallel to a wall under grav-
ity but without any contact with a surface. In this case, the
contact forces do not come into play. Miyamura et al. [5]
performed experiments to examine the wall effects on the
steady-state settling velocities of a single solid sphere placed
inside triangular and square cylinders and between parallel
plates. They introduced a wall correction factor to describe
the wall effect on the settling velocity. Takemura and Mag-
naudet [6] examined the lateral migration of a small spherical
buoyant particle in a wall-bounded linear shear flow with
Re < 2. An empirical fit capable of predicting the migration
velocity for varying distances between the particle and the
wall was developed.

Analytical work of a sphere moving parallel to a plane
was first conducted by Dean and O’Neill [7] and O’Neill et
al. [8]. Goldman et al. [9] derived asymptotic solutions of
the Stokes equations for both the translational and rotational
motions of a sphere moving parallel to a plane wall in the
limit where the gap width tends to become zero. Cox and
Hsu [10] and Vasseur and Cox [11] proposed an analytical
expression of the lateral inertial motion of a sphere near a
wall at low particle Reynolds numbers (Re < 0.3). Zeng
et al. [12,13] performed numerical simulations of a rigid
sphere translating parallel to a flat wall using the spectral
element method. Both lift and drag forces were studied and
the relationship between the drag and lift coefficients with the
Reynolds number (from 2 to 300) at different distances from
the wall were obtained. These studies show the importance
of examining the interaction of drag and lift forces to find the

underlying mechanism of the sphere–wall problem, which is
useful in investigating the problem addressed in this study.

For the descending process of a sphere placed along an
inclined slope, most previous studies focused on the kinetic
parameters (e.g. velocity, Reynolds number, drag force and
drag coefficient). Limited work has been done in terms of
the mechanical variables, such as the contact forces and the
hydrodynamic forces. In this paper, we, therefore focus on
finding the mechanism of interactions between the hydrody-
namic forces and the contact forces and their role in deter-
mining the pattern of movement of the sphere. Various factors
such as the properties of the sphere (density, size), slope incli-
nation (slope angle, friction) and fluid (density, viscosity)
can play a role in determining the pattern of movement of
the sphere. This study pays special attention to the viscosity
of the surrounding fluid, slope angles and the friction coef-
ficient between the sphere and the slope, while the density
and the diameter of the sphere are kept constant for brevity.

In this study, a three-dimensional coupled lattice Boltz-
mann method (LBM) and discrete element method (DEM)
code was developed to study the problem of a sphere falling
down an inclined slope. The particle scale modelling allows
examination of the underlying mechanisms such as veloc-
ity, forces and vorticity. The other advantage of LBM–DEM
simulation is that the properties of fluid, sphere and wall can
be modified independently. The results from the LBM–DEM
simulations can provide quantitative information so that the
underlying physical mechanism can be captured. An in-depth
understanding of this simple system may reveal the underly-
ing physical mechanism, which can be used to solve related
engineering problems such as hydroplaning observed in sub-
marine landslides.

This paper is organized as follows. Section 2 describes the
coupled LBM–DEM algorithm adopted in this study, and
Sect. 3 validates the coupled method with two benchmark
problems (sedimentation of a particle in a square cylinder and
a sphere rolling down an inclined slope). After validation, the
developed method is further applied to study the movement
of a sphere descending through a liquid along an inclined
plane. The results are summarized and discussed in Sect. 4.
The conclusions are presented in Sect. 5.

2 Numerical model

In this section, a brief description of the lattice Boltzmann
method (LBM), the discrete element method (DEM) and the
coupling strategy is presented.

2.1 D3Q15 LBM

Originated from the lattice gas automata (LGA), LBM solves
the continuous Boltzmann method with discrete lattices
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and converges to the Navier–Stokes equations at low Mach
numbers of less than one. LBM has great advantages over
traditional numerical methods, resulting in wide applications
in hydraulic, civil, chemical and even medical engineering
[14]. LBM can simulate various hydrodynamics [19] and
offers intrinsic parallelism due to its local nature. The lattice
Boltzmann approach has the advantage of accommodating
large particle sizes and the interaction between the fluid and
the moving particles can be modelled through relatively sim-
ple fluid–particle interface treatments [35], which allows for
modelling complex boundary conditions.

Because of its simplicity, lattice Boltzmann Bhatnagar–
Gross–Krook (LBGK) [15] model is adopted in this study.
The evolution equation can be expressed as

fi (x + ci�t, t + �t) − fi (x, t)

= −�t

τ

[
fi (x, t) − f eqi (x, t)

]
, (1)

where fi (x, t) is the density distribution function of a particle
moving with velocity ci at position x and time t , τ is the
relaxation time and f eqi (x, t) is the equilibrium distribution
function of fi (x, t) given by

f eqi (x, t) = ωiρ

[

1 + ci · u
c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

]

, (2)

where ρ is the fluid density, u is the fluid velocity, cs is the
speed of sound in the lattice, and ωi represents the weights
related to the lattice speeds. For the D3Q15 lattice model
[16] used in this study, the weighting factors ωi are given as

ωi =

⎧
⎪⎨

⎪⎩

2
9 , i = 0,

1
9 , i = 1, . . . , 6
1

72 , i = 7 . . . 14,

(3)

while the 15 discrete velocities are

ci =
⎧
⎨

⎩

(0, 0, 0) i = 0,

(± 1, 0, 0) , (0, ± 1, 0) , (0, 0, ± 1) i = 1, . . . , 6
(± 1, ± 1, ± 1) i = 7, . . . , 14.

(4)

The macroscopic variables can be obtained as

ρ =
14∑

i=0

fi , ρu =
14∑

i=1

ci fi , p = c2
sρ, (5)

where p is the pressure and can be obtained directly from den-
sity. The kinematic viscosity υ of the fluid is determined by

υ = c2
s

(
τ − 1

2

)
�t, (6)

where cs = c/
√

3 for D3Q15 model and c = �x/�t is the
lattice speed. �x is the lattice spacing and �t is the discrete

time step. It is noted that the relaxation time τ is the most
important parameter of the LBGK model, which controls the
relaxation speed of density distribution functions from non-
equilibrium state to equilibrium state and is related to the
viscosity of fluid. More details on LBM can be found in [14].

Since turbulence is involved in this problem, large eddy
simulation (LES) is incorporated in LBM to account for
turbulent effects. Turbulent dynamics is intrinsically non-
linear, the influence of the small removed scales on the large
resolved ones must be considered and have been widely
adopted within the Navier–Stokes framework. The LES strat-
egy consists of removing the smallest turbulent scales of
the flow, whose contribution to global features of the flow
is assumed to be small, therefore allowing for the use of a
much coarser grid resolution and a significant reduction in the
number of degrees of freedom of the computational model.
Since nonlinearities in LBM equations differ from those of
the Navier–Stokes equations, the use of an eddy-viscosity
model can be interpreted as a convenient trick to close the
LBM–LES equations [17]. The widely used single-parameter
Smagorinsky subgrid model [18] is adopted in this study for
numerical stability [19–21]. The turbulence is modelled by
adding an eddy viscosity term (which models the turbulence)
to the true fluid viscosity, which is related to the relaxation
time according to Eq. (6). Thus, both relaxation time and vis-
cosity can be split into two parts: fluid part υ, τ and turbulent
part υt , τt .

The turbulent viscosity is related to turbulent relaxation
time by τt = 3υt while υt can be calculated explicitly from
the strain rate tensor, which is obtained directly from the
second order moments,Q, of the non-equilibrium distribution
functions Qi j :

Qi j =
14∑

k=1

cki ck j
(
fk − f eqk

)

Q =
√

2
∑

i, j

Qi j Qi j

S = Q

2ρc2
s τ∗

υt = S2
c S, (7)

where Sc is the Smagorinsky constant; S is the character-
istic value of the strain rate tensor and τ∗ = τ + τt is
the total relaxation time. In this way, the turbulent viscos-
ity and relaxation time can be obtained directly from the
non-equilibrium distribution functions and are used in the
evolution equation at every time step. It can be observed that
the lattice Boltzmann equation is not changed and its sim-
plicity is maintained. Further details can be found in [22,23].

In LBM, all the evolutions and calculations are expressed
in non-dimensional lattice units. The basic principle of the

123



85 Page 4 of 19 C. Zhang et al.

conversion between LB and SI units is dimensional analysis
using fundamental parameters like lattice spacing �x , time
step �t and density ρ. For example, when sphere velocity in
lattice unit vl is obtained, then sphere velocity in the physical
unit is represented as vp = vl�x/�t . More details on the
conversion between the LB and SI units can be found in
[22,23].

2.2 Discrete element method

DEM solves movements of particles, like collisions between
particles and wall, congestion and migration, which has been
successfully applied in rock mechanics, geotechnical and
chemical engineering [24].

The motion of every sphere follows Newton’s second law:

mi V̇i =
∑

Fci j + F fi + Fei

Ii ω̇i =
∑

Ri×Fci j + T fi , (8)

where mi , Ii are the mass and moment of inertia of particle
i , Vi ,ωi are the translational and rotational velocity, respec-
tively while a superposed dot indicates a time derivative, Fci j
indicates the contact force of particle i due to particle j and
Ri is the vector connecting the center of particle i to the
location of the contact point. Fei denotes the external force
(gravity), while F fi and T fi are the hydrodynamic force and
moment exerted by fluid, respectively, and their expressions
are presented in the next section.

For this study, the soft contact model was applied to calcu-
late the contact forces which are composed of normal force
and tangential force, i.e., Fci j = Fnn + Ft t, where n, t are
the unit normal and tangential vectors while Fn, Ft are the
normal force and shear force of particle i due to particle j ,
which are calculated as follows:

Fn = knδn + cnvn

Ft = ktδt + ctvt , (9)

in which kn, kt are the normal and tangential contact stiffness
while cn , ct are the normal and tangential viscous damping
coefficient; δn, δt are the normal overlap and tangential dis-
placement while vn, vt are the normal and shear velocity at
the contact point, respectively.

2.3 Coupling LBM and DEM

To solve this problem, both the contact forces between the
sphere and slope, and the hydrodynamic forces exerted by the
fluid need to be coupled. In this study, the immersed boundary
technique proposed by Noble and Torczynski [25] is used for
LBM–DEM coupling because it establishes an accurate and

smooth lattice representation of solid particles to reduce the
fluctuation of the computed hydrodynamic forces [22].

A local ratio εs is defined as the area fraction of the nodal
cell covered by a solid particle. An additional collision term,
	s

i , which accounts for the effect of solid particle on fluid, is
added in the evolution equation of those lattice nodes (fully
or partially) covered by a solid particle,

fi (x + ci�t, t + �t) = fi (x, t) − (1 − Bs)

×
[
�t

τ

(
fi (x, t) − f eqi (x, t)

)] + Bs	
s
i , (10)

where Bs is a weighting function for the additional collision
operator 	s

i based on εs .Bs , 	s
i are written as follows,

Bs(εs, τ ) = εs(τ/�t − 1/2)

(1 − εs) + (τ/�t − 1/2)
, (11)

	s
i = [

fi ′(x, t) − f eqi ′ (ρ,u)
]

− [
fi (x, t) − f eqi (ρ, vp)

]
,

(12)

where i ′ donate the opposite direction of i ,vp is the rigid body
velocity of particle node. The hydrodynamic force exerted on
one solid particle by liquid can be obtained by summing the
momentum change of all the boundary nodes:

F f =
n∑

1

⎛

⎝Bs

Q∑

1

	s
i ci

⎞

⎠,

T f =
n∑

1

⎛

⎝(xn − xp) × Bs

Q∑

1

	s
i ci

⎞

⎠, (13)

where n is the number of boundary nodes and Q = 15 for
D3Q15 model. xn is the coordinates of the lattice node n
while xp is the coordinates of the particle center.
The interactions between fluid and particles are bi-directional.
The discrete time step also needs to be coupled and the cou-
pling strategy adopted is described in [22,23]. The time step
for LBM �t is determined by Eq. (6). The time step for
DEM �tD is calculated as per Eqs. (44) and (45) in [22] and
is related to the normal stiffness and mass of the particles.
Thus, there are two time steps used in the coupled LBM–
DEM, �t for the fluid flow and �tD for the particles. Since
�tD is generally smaller than �t , �tD is reduced to a new
value �tS so that the ratio between �t and �tS is an integer
nS , nS = �t/�tD + 1 and �tS = �t/nS .

The immersed moving boundary method is used to solve
the interactions between fluid and particles and calculate the
hydrodynamic forces and torques of the sphere exerted by
the surrounding fluid. More accurate results can be obtained
when more lattices are used to represent the sphere, leading
to an increased computational cost. The error is an artefact
of this approach and is not from DEM. It has been proven
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that the immersed moving boundary method has quadratic
convergence with grid refinement and satisfying results can
be obtained with at least 5 lattices representing a sphere along
its diameter [25]. The specific lattice resolution depends on
the required accuracy and computational cost.

3 Validation of the numerical model

The performance of the proposed coupled LBM–DEM
method was validated with two benchmark tests with dif-
ferent interactions and boundary conditions; they are (a)
sedimentation of a particle in a square cylinder and (b) a
sphere rolling down an inclined slope. Results are compared
with the analytical solutions or experimental results from
the literature. In general, a good agreement is obtained. In
this section, only the case of particle sedimentation in a
square cylinder is described while the problem of a sphere
rolling down an inclined plane (without fluid) is presented in
“Appendix”.

In order to validate the interactions between the fluid, the
particle, and walls, simulations of a sphere settling in a square
cylinder were conducted and compared with the experimen-
tal results as shown in Fig. 1. The size of the square cylinder
is 0.01 m (L) × 0.01 m (L) × 0.06 m and is kept constant
while the diameter of the sphere (D) is varied from 0.0012
to 0.0092 m, similar to the experiments [5]. Non-slip bound-
ary condition was applied to all six walls. The kinematic
viscosity of water is υ = 1.0 × 10−6 m2/s and the density
is ρ = 1000 kg/m3 while the density of the sphere is slightly
larger, 1000.001 kg/m3, to achieve creeping flow. The lattice
spacing is �x = 0.0002 m. A relaxation time of τ = 0.6
and a time step of �t = 0.0013 s was adopted. These three
parameters were chosen to achieve a satisfactory result with
acceptable computational cost. Lattice spacing determines
the number of lattices or node number, whereas the relax-
ation time is closely related to the numerical stability. Once
lattice spacing and relaxation time are chosen, the time step
can be calculated with Eq. (6). More details on the parameter
selection procedure can be found in [22].

In this study, the sphere which was initially fixed at the
center of the cylinder was released to settle under gravity.
After some time, the sphere reaches a terminal velocity ut
and is compared with the free settling velocity us calculated
from Stokes’ law. The Reynolds numbers of free settlings
(Re = us D/υ) were between 0.00094 and 0.42, whereas
those of hindered settlings (Re = ut D/υ) by the wall effect
were between 0.00067 and 0.014.

The computed dimensionless velocities ut/us are plotted
against different diameter/box size ratios of D/L as shown
in Fig. 1. It can be seen the numerical results match well
with the experimental data of Miyamura et al. [5]. Due to the
drag effect of the surrounding walls, the terminal velocity is

Fig. 1 Simulation set-up and results of the settlement of one particle
in a square cylinder

smaller than that of free settling when the presence of the
walls influences the movement of the sphere. As expected,
the wall effect increases with an increase in D/L , leading to
a smaller dimensionless velocity.

It is noted that there is a small deviation between the two
results. One reason is that, when the diameter of the sphere is
small, only a few LB lattices interact with the particle, result-
ing in an inaccurate calculation of the hydrodynamic forces
exerted on the particle. The other reason is the existence of
the top and bottom walls that are not sufficiently far from
the sphere, thus influencing the terminal velocity. The effect
of the presence of the top and bottom walls on the deviation
is more evident in the case where the ratio of D/L is large.
The effect of lattice number of the sphere on the deviation
is more evident in the case where D/L is small. These two
effects both contribute to the final deviation.

Further simulations were conducted with D = 0.002 m
to examine the effect of these two issues. It was found the
error between the numerical result and experimental data
decreased from 7.7 to 2.9% when the lattice spacing was
halved to 0.0001 m and the error decreased from 7.7 to 2.4%
when the cylinder length was doubled. Therefore, it can be
deduced the errors between the numerical predictions and
the experimental results will become smaller when a smaller
lattice spacing or a longer cylinder is used.

4 A sphere descending along an inclined slope in a
liquid

4.1 Overview

For a sphere in a liquid placed on an inclined slope, three sets
of forces and moments exist: (i) gravity, (ii) contact forces and
moments and (iii) hydrodynamic forces and moments, which
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Fig. 2 Schematic diagram of a sphere descending along an inclined slope in liquids and force analysis

are shown in Fig. 2. In this study, the gravity direction is
changed to represent the change in the slope angle. The effec-
tive gravitational acceleration is g = 9.81(1−ρ f /ρs) m/s2 to
account for buoyancy effect. For the simulations, the density
of the sphere is ρs = 1200 kg/m3, whereas that of the liq-
uid is ρ f = 1000 kg/m3. However, the simulation results are
normalized by the gravity force to investigate the behavior
of the sphere in general.

In terms of the equilibrium state in the x direction,

mg sin θ = Fs + Fd , (14)

and in the z direction,

mg cos θ = Fn + Fl , (15)

while in the y direction,

Mh = Mc, Mc = FsD/2, (16)

where m, D are the mass and diameter of sphere and θ is
the slope angle, while Fd , Fl , Fs, Fn, Mh, Mc are the drag
force, lift force, shear force, normal force, hydrodynamic
moment and contact moment of the sphere, respectively (see
Fig. 2). It is noted that the force balance is different from
that of Wardhaugh and Williams [4], who did not take the
hydrodynamic moment into account. In their analysis, the
normal force is not acting through the center of mass but
displaced by a distance b from the center, which contributes
a moment M = bFn balanced by an opposing moment from
shear force Mc = FsD/2.

The particle Reynolds number is defined as Re = ux D/υ

(where υ is the kinematic viscosity of fluid). For compari-
son purpose, the drag force and shear force are normalized
by mg sin θ , whereas the lift force and normal force are nor-
malized by mg cos θ . The physical time t is normalized as
T = t

√
g/D. The following four dimensionless coefficients

are therefore applied to better understand the descending pro-
cess, i.e.,

Cd = 8Fd
ρ f πu2

x D
2 , Cl = 8Fl

ρ f πu2
x D

2 ,

Cm = 16Mh

ρ f πu2
x D

3 , ω = ωy D/2

ux
, (17)

in which Cd ,Cl ,Cm, ω are the drag coefficient, lift coef-
ficient, moment coefficient and rolling coefficient, respec-
tively. ux , ωy are the translational and rotational velocity of
the sphere. The rolling coefficient is an indication of rolling
and sliding of the sphere, with ω = 1 meaning only rolling
and ω = 0 only sliding [4].

The diameter of the modelled sphere is 0.02 m. The stiff-
ness of the sphere is kn = 5×105 N/m and kt = 1×105 N/m
while the damping ratios are cn = ct = 0.5. The Smagorin-
sky constant is Sc = 0.1 for turbulent flow modelling
according to Feng et al. [22]. Although the model param-
eter values selected are those used widely [22,23], the effect
of those on the results is a subject of future study.

In Sect. 3, the error between numerical results and exper-
imental results decreases with increase in the number of
lattices representing the sphere diameter. The error can be
neglected when about 15 lattices represent the sphere diam-
eter (0.003 m). Since the flow condition in this section is
more complex, 20 lattices over the sphere diameter is chosen
to obtain better results with acceptable computational cost.
Thus, a lattice spacing of �x = 0.001 m was used. The time
step �t = 0.00033 s was adopted for both LBM and DEM
iterations, resulting in a lattice speed 3 m/s to ensure a Mach
number of less than one.

The fluid domain was bounded by six stationary walls and
the boundary effects were examined prior to the main study.
Apart from the bottom wall that represents a slope, the other
five walls, especially the upper wall, have an effect on the
movement of the sphere as discussed by many researchers
[6,10,12,26]. In order to estimate the impact of the upper
and side walls on the results, several simulations with dif-
ferent domain sizes were conducted. The slope angle was
75◦, whereas the friction coefficient was 0.2679 (tan 15◦).
The fluid viscosity was 1.0 × 10−4 m2/s. The boundary con-
dition for all walls was no-slip. The sphere was first fixed at
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Table 1 The final results of different domain sizes (slope angle is 75◦, friction coefficient is 0.2679 (tan 15◦). The fluid viscosity is 1.0×10−4 m2/s)

Domain size (m) Re Velocity (m/s) Drag force (N) Lift force (N) Shear force (N) Normal force (N)

0.6 × 0.10 × 0.08 17.22 0.0287 1.009 0.100 0.0490 0.183

0.6 × 0.10 × 0.06 17.10 0.0285 1.011 0.101 0.0492 0.184

0.6 × 0.10 × 0.04 16.34 0.0272 1.005 0.084 0.0534 0.199

0.6 × 0.12 × 0.06 17.15 0.0286 1.008 0.100 0.0492 0.184

0.6 × 0.10 × 0.06 17.10 0.0285 1.011 0.101 0.0492 0.184

0.6 × 0.08 × 0.06 16.74 0.0279 1.009 0.099 0.0492 0.184

(0.04, 0.05, 0.01 m) on the bottom boundary and relaxed for
500 steps to make the normal force in the z direction equal
to mg cos θ and then the horizontal acceleration mg sin θ was
added in the x direction to initiate the sphere to move.

Five domain sizes were chosen (0.6 m × 0.1 m × 0.08 m,
0.6 m × 0.1 m × 0.06 m, 0.6 m × 0.1 m × 0.04 m, 0.6 m ×
0.12 m × 0.06 m, 0.6 m × 0.08 m × 0.06 m). The results are
presented in Table 1. When the height of the domain is larger
than 0.06 m or the width is larger than 0.1 m, the final parame-
ters of the sphere like Re, velocity, and forces remains almost
unchanged. That is, when the domain size was larger than
0.6 m × 0.1 m × 0.06 m, the boundary effect became small
and the error due to the presence of the upper and side walls
was neglected. Thus, 0.6 m × 0.1 m×0.06 m was chosen as
the domain size for this work to take account of both accuracy
and computational cost.

The descending process of the sphere is closely related
to Re of the sphere, which is determined by gravity, contact
forces and hydrodynamic forces. Different Re of the sphere
can be obtained by changing the slope angle, viscosity or the
friction between the sphere and slope. Table 2 shows a sum-
mary of 62 case studies in which the slope angle, viscosity
and the friction between the sphere and slope were varied.
In the first series, the effects of slope angle and fluid vis-
cosity on the descending pattern were studied. Three slope
angles (45◦, 60◦, 75◦) were used while the fluid viscosity
was changed from 1.0 × 10−6 to 6.0 × 10−4 m/s2 (i.e. the
relaxation time τ was modified from 0.501 to 1.1). The fric-
tion coefficient, μ, between the sphere and slope was fixed to
be 0.2679 (tan 15◦). In the second series, the effect of slope
friction on Re and other parameters was further studied. The
friction coefficient was varied from 0 to 11.43 (i.e. the fric-
tion angle varies from 0◦ to 85◦). The slope angle was fixed
to be 75◦, whereas the viscosity was set to 1.0 × 10−5 m2/s.

Following the work of Feng et al. [23], we used the simple
and convenient D3Q15 model for LBM and incorporated the
Smagorinsky subgrid model for numerical stability. D3Q15
model may break the rotational invariance due to truncation
errors at high Reynolds number [30–33]. D3Q27 model with
Multiple-Relaxation Time (MRT) is currently the best model
to simulate turbulence at high Reynolds flows. Most of the

Table 2 Summary of slope angle, fluid viscosity and friction coefficient
used in simulations

Slope angle (◦) Fluid viscosity (m/s2) Friction angle (◦)

1.0E−6 0

45 2.0E−6 5

60 … …

75 4.0E−4 80

6.0E−4 85

data used to obtain the quantitative relations in this study are
for cases in which Re is less than 300. More efforts will be
made in the future to study this topic with D3Q27 model with
MRT model.

4.2 Descending patterns

For a sphere moving down an inclined slope without fluid,
the velocity increases at a constant acceleration while the
contact forces remain unchanged [27]. From the fluid coupled
simulations conducted in this study, two distinct patterns of
particle behavior were observed as shown in Fig. 3: (i) stable
and (ii) fluctuating. For the stable case, all the forces do not
change with time when the steady state was reached. For the
fluctuating case, the forces were changing and oscillating
with time.

The drag force and shear force in the x-direction act as
a resistance to the movement of the sphere, balancing the
driving force caused by the gravity component parallel to the
slope. Since the drag force generally increases with Re, the
sphere tends to reach a terminal velocity under the actions of
gravity, drag force and shear force instead of accelerating as
in the no fluid case.

The lift force works together with the normal contact
force to balance the gravity component normal to the slope.
According to Zeng et al. [12,13] who conducted simula-
tions of a sphere settling down close to a vertical wall, there
are three primary contributions to the lift force: (i) shear-
induced lift, (ii) rotation-induced lift, and (iii) wall-induced
lift. The lift force of the sphere originates from the vorticity
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Fig. 3 The instantaneous Re and normalized normal force with time for the two descending patterns

and pressure differences around the sphere. In this problem,
the existence of the bottom wall breaks the symmetry of the
pressure and vorticity fields and is the main reason for the lift
force. Thus, the wall-induced lift force is dominant and is a
result of two fundamental mechanisms: pressure difference
effect [4,12] and vorticity effect [12].

Figures 4 and 5 show the instantaneous velocity field and
vorticity field around the sphere, respectively. In Figs. 4a and
5a, the results of the plan view at z = 0.01 m (i.e. one particle
radius distance from the slope) are presented for the stable
case of Re < 100). Both the velocity field and vorticity field
are symmetrical on this plane as expected. The side view at
y = 0.05 m for the two patterns are shown in Figs. 4b, c
and 5b, c. In all patterns, both the velocity field and vorticity
field are asymmetrical in this plane. The asymmetry of the
vorticity distribution in the wake of the sphere contributes to
an asymmetric induced flow. This generates a lift force on
the particle directed away from the slope [13].

When Re is smaller than 100, the vortex in the wake
behind the sphere is stable, as shown in Figs. 4b and 5b.
When Re > 100, one-sided double threaded wake vortices
are observed as shown in Figs. 4c and 5c and the effect of vor-
ticity on lifting becomes particularly strong [12]. The vortex
swings and even sheds at a certain frequency. The pressure
and vorticity distributions on the surface of the sphere are
changing and the lift force fluctuates. With an increase in
Re, the hydrodynamic forces increase and thus the lift force
increases. The normal force then becomes smaller due to the
force balance in the z-direction.

The motion of the particle is determined by the balance
between gravity, hydrodynamic forces, and contact forces.
As the particle is always in contact with the wall in the present
simulation cases, the normal force is not zero and there is
friction.

In Fig. 6, the averaged lift coefficient and lift force of
the last 5000 steps of the stable and fluctuating case simula-

tions are plotted against Re. Figure 6 shows differences in the
lift coefficient with slope angle. The differences are caused
by rotation-induced lift, i.e. Magnus lift effect [12,23]. To
investigate the magnitude of the Magnus lift coefficient, sim-
ulations were conducted by forcing the rotation to be zero
(sliding only). The cases with two values of Re (1.07 and
107) were examined.

As shown in Fig. 7, the rolling coefficient increases with
decreasing slope angle (i.e. more rolling) but it is zero for
the zero rotation cases. The lift coefficients for different slope
angles are almost identical at the same Re, when the sphere is
not allowed to rotate. Therefore, different rolling coefficients
and lift coefficients are obtained for different slope angles
with same Re when the sphere can rotate freely.

As observed in the streamline patterns in Fig. 8, the effect
of rotation is to drive the vortex away from the sphere,
reducing the vorticity driven lift effect. When the slope
angle decreases, the contact moment caused by shear force
increases due to increase in the normal force and hence the
sphere tends to roll. More rotation gives less lift effect (or
reduction in the lift coefficient as shown in the right graph
in Fig. 7) for a given Re; this is more pronounced in the
Re = 107 cases. In the zero rotation cases, the lift coeffi-
cient is large, making the particle to fluctuate. In summary,
the role of rotation is to reduce the overall lift coefficient. The
lift force obtained in our simulations is the combined effect
of wall-induced lift and rotation-induced lift.

If there is no rotation of the sphere, the existence of the
two regimes is a Reynolds number effect: at higher Re fluid
structures becomes unstable leading to the fluctuating behav-
ior. The effects of changing fluid viscosity and slope angle
are directly related to the Reynolds number. If the sphere
is allowed to rotate, the situation is different. The existence
of the two regimes is a combined effect of both Reynolds
number and rotation.
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Fig. 4 The instantaneous velocity fields (m/s) of the descending pro-
cess at different times for two patterns. The sphere moves from left
to right. a Velocity in y direction of the stable case for the plane of

z = 0.01 m; b velocity in z direction of the stable case for the plane
of y = 0.05 m; c velocity in z direction of the fluctuating case for the
plane of y = 0.05 m

Fig. 5 The instantaneous vorticity fields (1/s) of the descending process at different times for two patterns. The sphere moves from left to right. a
Stable case for the plane of z = 0.01 m; b stable case for the plane of y = 0.05 m; c fluctuating case for the plane of y = 0.05 m

4.3 Slope angle and fluid viscosity effects

The effect of slope angle and fluid viscosity on the descend-
ing behavior of a sphere was investigated. Figure 9 shows the
variations of normalized normal force with time for differ-
ent slope angles and fluid viscosities. As the fluid viscosity
decreases, the descending pattern changes from the stable
condition to the fluctuating condition (see the cases of slope
angle= 75◦). For the stable cases, lower viscosity means
smaller drag force and larger velocity (Re). As a result, the

lift force increases while the normal force decreases. For the
fluctuating cases, both the velocity and normal force change
with time.

To illustrate the effect of fluid viscosity and slope angle
more clearly, only results of the 9 cases (3 slope angles,
45◦, 60◦, 75◦, and 3 viscosities, 1.0 × 10−6, 1.0 × 10−5,
1.0 × 10−4 m2/s) are presented in Fig. 10 for comparison
purpose. The temporal variations of Re, rotational velocity,
normalized lift force, normalized drag force, normalized nor-
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Fig. 6 Normalized lift force and lift coefficient

Fig. 7 Results of rolling coefficient and lift coefficient of different slope angles for free rotating condition and nonrotating condition when Re is
around 1.07 and 107

mal contact force and normalized shear contact force are
shown.

As expected, the sphere velocity (Re) increases with slope
angle and decreases with the increase in viscosity. As shown
by the Fig. 10e, f, the normal and shear forces decrease (or
hydrodynamic and drag forces increase) with time because of
the increase in Re with time. The rotational velocity increases
to a steady state in the two high viscosity cases (1.0 × 10−5

and 1.0×10−4 m2/s). The rotational velocity decreases with
increase in slope angle due to decrease in shear force and
moment, which indicates more sliding.

4.4 Slope friction effect

In this part, the effect of the friction between the slope and
sphere was investigated by changing the friction angle from
0◦ to 85◦. The slope angle was fixed to be 75◦, whereas the
viscosity was set to 1.0 × 10−5 m2/s.

The instantaneous Re and normalized normal forces of
different friction cases are shown in Fig. 11. When the friction
angle is less than 60◦, the velocity and normal force become

stable with time. When it is greater than 60◦, the normal force
starts to fluctuate with time even the Re values are smaller
than the cases of friction angle less than 60◦. This is because
rotation velocity (or rolling) increases with friction angle,
which in turn influences the vortex and the movement of the
sphere.

Figure 12 shows the velocity and vorticity fields when
the friction angle is 0◦, 50◦ and 85◦. The vortex structures
between the three cases are significantly different. The vortex
structures of the friction angle of 0◦ and 50◦ cases become
stable after a normalized time T = 19.8 but the magnitudes
of velocity and vorticity are different. The magnitude of the
normal force is different between these two cases because
of the difference in the vortex structures. The vortex for a
friction angle = 85◦ case sheds regularly. As a result, the lift
force and the normal force dynamically change, as observed
in Fig. 11.

The average values of selected variables for the last 5000
steps are plotted against the friction of the slope as shown in
Fig. 13. The average Re decreases with increasing friction
angle due to an increase in the resisting force, i.e., the shear
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Fig. 8 Streamline patterns of different slope angles for free rotating condition and nonrotating condition when Re is around 107. The sphere moves
from left to right

force. All the variables show a transition in the mechanism
when the friction angle is between 30◦ and 60◦. As shown
by the rolling coefficient plot, when the slope friction angle
is greater than 60◦, the sphere movement becomes rolling
dominant, whereas it is sliding dominant when the friction
angle is less than 30◦.

As discussed earlier, the rotation has a large effect on
the vortex structure and hence the lift force. When the
sphere behavior becomes rolling dominant, the lift coeffi-
cient decreases. The normal and shear forces and moment
increase, which reduces Re. But the vortex structure becomes
more unstable as shown in the 85◦ case in Fig. 12. This, in
turn, makes the sphere to fluctuate, as shown by the large
friction cases in Fig. 11.

As also discussed in the earlier sections, the simulation
results shown in this section highlight the importance of
rolling behavior, which is influenced by the friction between
the sphere and slope. Enhanced rolling decreases the lift force
due to the creation of vortices. This, in turn, reduces the veloc-
ity because of increased contact forces. However, rolling also
makes the vortices to become unstable, which induces the
sphere to exhibit an oscillatory behavior.

4.5 Interrelationships of variables

In this section, the averaged results from the last 5000 steps
of the stable and fluctuating cases presented in Sect. 4.3 are

used to develop some empirical relationships. The results are
presented in Figs. 14 and 15. The relationships are limited
to the conditions when the friction between the sphere and
slope is 0.2679 (tan 15◦).

The pattern of the descending process of a sphere is
related to the lift coefficient, which is a function of Re as
well as the slope angle (or the vortex structure affected by
the rolling behavior of the sphere) as shown Fig. 14a. As
indicated in [12], for a sphere moving parallel to a wall
without contact in a stagnant fluid, the lift coefficient of
free rotating condition is the sum of wall-induced lift coef-
ficient without rotation and rotation-induced lift coefficient,
that is, Cl = Cl,W + Cl,M , where Cl is the lift coefficient
for free rotating condition while Cl,W , Cl,M represent wall-
induced lift coefficient and rotation-induced lift coefficient,
respectively. When a sphere moving parallel to a vertical
wall, the direction of hydrodynamic moment is anticlock-
wise and thus the sphere rotate anticlockwise. The effect
of rotation-induced lift is to increase the total lift coeffi-
cient. When the sphere descending along an inclined slope
in our simulations, the direction of hydrodynamic moment
is anticlockwise but the contact moment due to shear force
is clockwise. The contact moment is dominant and make
the sphere rotate clockwise. As result, the effect of rotation-
induced lift is to decrease the total lift coefficient. Thus, in
our cases, Cl = Cl,W − Cl,M .
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Fig. 9 The velocities and normalized normal forces of the sphere for
different slope angles and fluid viscosities. Different fluid viscosities
are represented by different symbols; a velocity for slope angle 45◦; b

normalized normal force for slope angle 45◦; c velocity for slope angle
60◦; d normalized normal force for slope angle 60◦; e velocity for slope
angle 75◦; f normalized normal force for slope angle 75◦

Zeng et al. [13] obtained an empirical relation, 0.313 +
0.812e(−0.125Re0.77), for the translation-induced lift coeffi-
cient when the particle is in contact with a vertical wall
but without contact forces. In our case with contact forces,
Cl,W = 0.41 + 1.2e(−0.17Re0.64) gave a good fit.

For rotation-induced lift coefficient, it is assumed that it is
a linear function of rolling coefficient ω [12,28],Cl,M = kω.
Zeng et al. [12] showed that k is within the range of 0.25 and
0.35, while Bagchi and Balachandar [28] showed that k is

around 0.275. It is found that k = 0.3 gives good fit for our
simulation data. The total lift coefficient for a sphere descend-
ing along an inclined slope in liquid can then be described as
follows:

Cl = 0.41 + 1.2e
(−0.17Re0.64

)
− 0.3ω. (18)

The comparison of the simulated data to the values from Eq.
(18) and Zeng et al. [13] is shown in Fig. 14a. It is noted that
there are errors between the simulated lift coefficient and
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Fig. 10 The simulating results of the descending process with 3 slope
angles, 45◦, 60◦, 75◦, and 2 viscosities, 1.0 × 10−5, 1.0 × 10−4 m2 /s.
square: 75◦; circle: 60◦; triangle: 45◦; red: 1.0 × 10−5 m2/s; blue:

1.0 × 10−4 m2/s; a Reynolds number; b rotational velocity; c nor-
malized lift force; d normalized drag force; e normalized normal force;
f normalized shear force (color figure online)

Eq. (18) when Re > 100 as the vortex structure becomes
unstable. Further work is needed to examine unstable vortex
structures.

The simulation results show that the drag coefficient
depends mainly on Re but is independent of slope angle
(or rolling) as shown in Fig. 14b. The following equation
is therefore proposed:

Cd = 66

Re

(
1 + 0.15Re0.678

)
+ 0.42

1 + 42500Re−1.8 , (19)

This is based on the expression of the drag coefficient of a
sphere moving down in an infinite fluid domain by Clift et
al. [29]. Due to the contact forces, the drag coefficient of
a sphere descending along an inclined slope is much larger
than that of Clift et al. Unlike the lift coefficient, the relation
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Fig. 11 The instantaneous Re and normalized normal force of the descending process with different friction angles

Fig. 12 The instantaneous velocity field (m/s) and vorticity field (1/s) for the plane of y = 0.05 m at different times with different friction angles.
The sphere moves from left to right. a Velocity in y direction; b vorticity

between drag coefficient and Re was found to be unique for
different slope angles. Sphere rotation has little effect on
the drag coefficient, which is consistent with the published
results [12,28].

The moment coefficient and the rolling coefficient
(Fig. 14c, d) are influenced by Re and slope angle.

Cm = 21.6

(tan θ)1.2 Re0.84(tan θ)0.45
, (20)

ω = 0.29

(sin θ)2.0 e
−0.000128(cos θ)−1.25Re. (21)

The results of the averaged hydrodynamic and contact forces
and the moments are shown in Fig. 15. As discussed earlier,
they are functions of Re as well as slope angle (or rolling).
For the normal force, when Re < 100, the best fitting line
can be drawn as:
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Fig. 13 Simulating results for different friction angles

Fn = mg cos θ
[
−0.0155(tan θ)1.4 ln(Re) + 0.99(tan θ)−0.04

]
or

Fn = mg cos θ [a(θ) ln(Re) + b(θ)] (22)

while the other forces and moments can be derived by force
analysis, which are summarized as follows:

Fs = μmg cos θ [a(θ) ln(Re) + b(θ)] , (23)

Fl = mg cos θ [1 − a(θ) ln(Re) − b(θ)] , (24)

Fd = mg sin θ − μmg cos θ [a(θ) ln(Re) + b(θ)] , (25)

Mh = Mc = D

2
μmg cos θ (a(θ) ln(Re) + b(θ)) , (26)

in which a(θ), b(θ)are the coefficients of the fitting function.
The curve fitted results are shown in Fig. 15.

5 Conclusions

The descending process of a sphere along an inclined slope
in fluids was numerically studied with a coupled 3D LBM–
DEM code. The effects of slope angle, fluid viscosity and
friction coefficient between sphere and slope on the descend-
ing process were investigated. In this paper, results of both
hydrodynamic and contact forces and moments are dis-
cussed using five dimensionless coefficients, i.e., Reynolds
number, lift coefficient, drag coefficient, moment coefficient

123



85 Page 16 of 19 C. Zhang et al.

Fig. 14 The averaged four dimensionless coefficients and related fitting lines

and rolling coefficient. The following conclusions can be
drawn:

1. The movement of a sphere placed along an inclined
slope in a fluid is complex because of the interac-
tion between hydrodynamic forces and contact forces.
Numerical simulations show that two patterns exist: sta-
ble and fluctuating. In the stable pattern, the normal force
of the sphere reaches a steady state. In the fluctuating pat-
tern, the normal force fluctuates with time.

2. The existence of an inclined slope breaks the symmetry
of vortex and pressure fields around the sphere and thus
leads to a net lift force normal to the slope, which is
governed by the vortex in the wake of the sphere. The
vortex structure determines the lift force of the sphere and
thus governs the changing patterns of the normal force. It
was found that the vortex structure is not only determined
by translation (Re) but also by sphere rotation.

3. Slope angle and slope-sphere friction influence the move-
ment of a sphere. On one hand, they impact the transla-
tional motion by influencing the driving force (mg sin θ)

and resisting forces (drag force and shear force). On
the other hand, they play important roles on the rota-
tional motion, which in turn creates different vortex

structures even though the translation motion (Re) is the
same.

4. Enhanced rolling decreases the lift force due to the cre-
ation of vortices. This, in turn, reduces the translational
velocity because of increased contact forces. However,
rolling also makes the vortices to become unstable, which
causes the sphere to exhibit an oscillatory behavior. For
a given friction angle between slope and sphere, both the
dimensional forces and moments and the dimensionless
coefficients can be related to Re and rotation velocity
(or slope angle). Empirical relationships between them
are quantitatively proposed, which show that the moving
state of a sphere is predominantly affected by the fric-
tion coefficient. Thus, the empirical formulas should be
modified to incorporate the effect of friction. That is, the
forces and dimensionless coefficients are functions of Re,
slope angle and friction coefficient, which is planned for
future study.

The key point of this paper is to study the different
descending patterns of the sphere and the influencing fac-
tors like viscosity and slope angle. Following the work of
Feng et al. [23], we used the simple and convenient D3Q15
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Fig. 15 The averaged hydrodynamic and contact forces and moments and related fitting lines

model for LBM and incorporated the Smagorinsky subgrid
model for numerical stability. D3Q27 model is currently the
best model to simulate turbulent flow, while D3Q15 model
and D3Q19 model may break the rotational invariance due
to truncation errors [30–33]. Such improvement on the LBM
model will provide an opportunity to examine the studied
behavior at very large Re conditions.

In this study, the density and diameter of the sphere, as well
as the density of the fluid are all constant but their effects
can also be investigated. Furthermore, the deformation of
the sphere is also not considered in the current work and the
work of Takemura [34] on the movement of a deformable
bubble near a vertical wall can be referred to for further
research.
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Appendix

A sphere rolling down an inclined plane

To test the performance of our 3D DEM code, a sphere rolling
down an inclined plane without fluid (the dry case) was sim-
ulated. Depending on the slope angle and the friction angle
between the sphere and slope surface, there are two steady
states of the movement, sliding and rolling. Ke and Bray [27]
derived the theoretical solution of forces and accelerations
for the 2D case (a disk rolling down a slope). Here, a theo-
retical solution for the 3D case is derived. The translational
acceleration can be obtained by force analysis in the direc-
tion parallel to the slope, whereas the angular acceleration is
derived from the moment caused by the shear force.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


85 Page 18 of 19 C. Zhang et al.

Fig. 16 Comparison of numerical results and analytical solutions of a ball rolling down an inclined slope

1. Sliding case with φ ≤ φcritical:

N = mgcosθ; S = mgcosθ tanφ

u̇ = g(sin θ − cosθ tanφ)

ω̇ = 2.5gcosθ tanφ/r, (A.1)

2. Rolling case with φ ≤ φcritical:

N = mgcosθ; S = 2mg sin θ/7

u̇ = 5g sin θ/7

ω̇ = 5g sin θ/7r, (A.2)

3. Critical friction angle:

φcritical = tan−1(2 tan θ/7), (A.3)

where θ, φ, φcritical are slope angle, friction angle and critical
friction angle between sliding and rolling cases, respectively;
m, g are mass of the sphere and gravitational acceleration
while N , S represent normal force and shear force of the
sphere; u, ω are the translational and rotational velocity,
respectively.

In the simulations, the slope angle was fixed to 45◦ while
the friction angle was changed from 0◦ to 80◦. The radius
of the disk or sphere was 0.1 m and density was 1200 kg/m3.
The stiffness values of the ball were kn = 5 × 105 N/m and
kt = 1×105N/m while the damp ratios were cn = ct = 0.5.
The time step was 0.0001 s. The particle started moving from
the stationary state when simulation began and reached the
steady state when both translational and rotational accel-
eration became constant. The numerical results, as well as
analytical solutions are both showed in Fig. 16. For easy com-
parison, the normal force is normalized by mg cos θ , shear
force is normalized by mg while translational acceleration u̇
and rotational acceleration ω̇ are normalized by g.

Figure 14 shows that the numerical values are consistent
with the theoretical solutions. In the sliding regime, the shear
force and angular acceleration increase with friction angle
while the changing trend of the translational acceleration is
opposite. When the friction angle becomes greater than the
critical friction angle, the sphere rolls and both the contact
forces and accelerations are independent of friction angle. In
summary, both sliding and rolling occur in the sliding regime,
whereas only rolling exists for the rolling regime.
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