517 research outputs found

    The Structure of n-Point One-Loop Open Superstring Amplitudes

    Get PDF
    In this article we present the worldsheet integrand for one-loop amplitudes in maximally supersymmetric superstring theory involving any number n of massless open string states. The polarization dependence is organized into the same BRST invariant kinematic combinations which also govern the leading string correction to tree level amplitudes. The dimensions of the bases for both the kinematics and the associated worldsheet integrals is found to be the unsigned Stirling number S_3^{n-1} of first kind. We explain why the same combinatorial structures govern on the one hand finite one-loop amplitudes of equal helicity states in pure Yang Mills theory and on the other hand the color tensors at quadratic alpha prime order of the color dressed tree amplitude.Comment: 75 pp, 8 figs, harvmac TeX, v2: published versio

    Maxwell-like Lagrangians for higher spins

    Full text link
    We show how implementing invariance under divergence-free gauge transformations leads to a remarkably simple Lagrangian description of massless bosons of any spin. Our construction covers both flat and (A)dS backgrounds and extends to tensors of arbitrary mixed-symmetry type. Irreducible and traceless fields produce single-particle actions, while whenever trace constraints can be dispensed with the resulting Lagrangians display the same reducible, multi-particle spectra as those emerging from the tensionless limit of free open-string field theory. For all explored options the corresponding kinetic operators take essentially the same form as in the spin-one, Maxwell case.Comment: 77 pages, revised version. Erroneous interpretation and proof of the gauge-fixing procedure for mixed-symmetry fields corrected. As a consequence, the mixed-symmetry, one-particle Lagrangians are to be complemented with conditions on the divergences of the fields; all other conclusions unchanged. Additional minor changes including references added. To appear in JHE

    Succinic acid production with Actinobacillus succinogenes: rate and yield analysis of chemostat and biofilm cultures

    Get PDF
    BACKGROUND: Succinic acid is well established as bio-based platform chemical with production quantities expecting to increase exponentially within the next decade. Actinobacillus succinogenes is by far the most studied wild organism for producing succinic acid and is known for high yield and titre during production on various sugars in batch culture. At low shear conditions continuous fermentation with A. succinogenes results in biofilm formation. In this study, a novel shear controlled fermenter was developed that enabled: 1) chemostat operation where self-immobilisation was opposed by high shear rates and, 2) in-situ removal of biofilm by increasing shear rates and subsequent analysis thereof. RESULTS: The volumetric productivity of the biofilm fermentations were an order of magnitude more than the chemostat runs. In addition the biofilm runs obtained substantially higher yields. Succinic acid to acetic acid ratios for chemostat runs were 1.28±0.2 g.g-1, while the ratios for biofilm runs started at 2.4 g.g-1 and increased up to 3.3 g.g-1 as glucose consumption increased. This corresponded to an overall yield on glucose of 0.48±0.05 g.g-1 for chemostat runs, while the yields varied between 0.63 g.g-1 and 0.74 g.g-1 for biofilm runs. Specific growth rates (μ) were shown to be severely inhibited by the formation of organic acids, with μ only 12% of μmax at a succinic acid titre of 7 g.L-1. Maintenance production of succinic acid was shown to be dominant for the biofilm runs with cell based production rates (extracellular polymeric substance removed) decreasing as SA titre increases. CONCLUSIONS: The novel fermenter allowed for an in-depth bioreaction analysis of A. succinogenes. Biofilm cells achieve higher SA yields than suspended cells and allow for operation at higher succinic acid titre. Both growth and maintenance rates were shown to drastically decrease with succinic acid titre. The A. succinogenes biofilm process has vast potential, where self-induced high cell densities result in higher succinic acid productivity and yield.http://www.microbialcellfactories.com/am201

    Gray matter imaging in multiple sclerosis: what have we learned?

    Get PDF
    At the early onset of the 20th century, several studies already reported that the gray matter was implicated in the histopathology of multiple sclerosis (MS). However, as white matter pathology long received predominant attention in this disease, and histological staining techniques for detecting myelin in the gray matter were suboptimal, it was not until the beginning of the 21st century that the true extent and importance of gray matter pathology in MS was finally recognized. Gray matter damage was shown to be frequent and extensive, and more pronounced in the progressive disease phases. Several studies subsequently demonstrated that the histopathology of gray matter lesions differs from that of white matter lesions. Unfortunately, imaging of pathology in gray matter structures proved to be difficult, especially when using conventional magnetic resonance imaging (MRI) techniques. However, with the recent introduction of several more advanced MRI techniques, the detection of cortical and subcortical damage in MS has considerably improved. This has important consequences for studying the clinical correlates of gray matter damage. In this review, we provide an overview of what has been learned about imaging of gray matter damage in MS, and offer a brief perspective with regards to future developments in this field
    corecore