128 research outputs found

    Deciphering a subgroup of breast carcinomas with putative progression of grade during carcinogenesis revealed by comparative genomic hybridisation (CGH) and immunohistochemistry

    Get PDF
    Distinct parallel cytogenetic pathways in breast carcinogenesis could be identified in recent years. Nevertheless, it remained unclear as to which tumours may have progressed in grade or which patterns of cytogenetic alteration may define the switch from an in situ towards an invasive lesion. In order to gain more detailed insights into cytogenetic mechanisms of the pathogenesis of breast cancer, the chromosomal imbalances of 206 invasive breast cancer cases were characterised by means of comparative genomic hybridisation (CGH). CGH data were subjected to hierarchical cluster analysis and the results were further compared with immunohistochemical findings on tissue arrays from the same breast cancer cases. The combined analysis of immunohistochemical and cytogenetic data provided evidence that carcinomas with gains of 7p, and to a lesser extent losses of 9q and gains of 5p, are a distinct subgroup within the spectrum of ductal invasive grade 3 breast carcinomas. These aberrations were associated with a high degree of cytogenetic instability (16.6 alterations per case on average), 16q-losses in over 70% of these cases, strong oestrogen receptor expression and absence of strong expression of p53, c-erbB2 and Ck 5. These characteristics provide strong support for the hypothesis that these tumours may develop through stages of well- and perhaps intermediately differentiated breast cancers. Our results therefore underline the existence of several parallel and also stepwise progression pathways towards breast cancer

    Endosialin expression in relation to clinicopathological and biological variables in rectal cancers with a Swedish clinical trial of preoperative radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of changes in tumour-associated stroma for tumour initiation and progression has been established. Endosialin is expressed in fibroblasts and pericytes of blood vessels in several types of tumours, and is involved in the progression of colorectal cancer. In order to see whether endosialin was related to radiotherapy (RT) response, and clinicopathological and biological variables, we investigated endosialin expression in rectal cancers from the patients who participated in a Swedish clinical trial of preoperative RT.</p> <p>Methods</p> <p>Endosialin was immunohistochemically examined in normal mucosa, including distant (<it>n </it>= 72) and adjacent (<it>n </it>= 112) normal mucosa, and primary tumours (<it>n </it>= 135). Seventy-three of 135 patients received surgery alone and 62 received additional preoperative RT.</p> <p>Results</p> <p>Endosialin expression in the stroma increased from normal mucosa to tumour (<it>p </it>< 0.0001) both in RT and non-RT group. In the RT group, endosialin expression in the stroma was positively associated with expression of cyclooxygenase-2 (Cox-2) (<it>p </it>= 0.03), p73 (<it>p </it>= 0.01) and phosphates of regenerating liver (PRL) (<it>p </it>= 0.002). Endosialin expression in the tumour cells of both in the RT group (<it>p </it>= 0.01) and the non-RT group (<it>p </it>= 0.06) was observed more often in tumours with an infiltrative growth pattern than in tumours with an expansive growth pattern. In the RT group, endosialin expression in tumour cells was positively related to PRL expression (<it>p </it>= 0.02), whereas in the non-RT group, endosialin expression in tumour cells was positively related to p73 expression (<it>p </it>= 0.01).</p> <p>Conclusions</p> <p>Endosialin expression may be involved in the progression of rectal cancers, and was related to Cox-2, p73 and PRL expression. However, a direct relationship between endosialin expression and RT responses in patients was not found.</p

    Streptococcus pneumoniae induced c-Jun-N-terminal kinase- and AP-1 -dependent IL-8 release by lung epithelial BEAS-2B cells

    Get PDF
    BACKGROUND: Although pneumococcal pneumonia is one of the most common causes of death due to infectious diseases, little is known about pneumococci-lung cell interaction. Herein we tested the hypothesis that pneumococci activated pulmonary epithelial cell cytokine release by c-Jun-NH(2)-terminal kinase (JNK) METHODS: Human bronchial epithelial cells (BEAS-2B) or epithelial HEK293 cells were infected with S. pneumoniae R6x and cytokine induction was measured by RT-PCR, ELISA and Bioplex assay. JNK-phosphorylation was detected by Western blot and nuclear signaling was assessed by electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). JNK was modulated by the small molecule inhibitor SP600125 and AP1 by transfection of a dominant negative mutant. RESULTS: S. pneumoniae induced the release of distinct CC and CXC, as well as Th1 and Th2 cytokines and growth factors by human lung epithelial cell line BEAS-2B. Furthermore, pneumococci infection resulted in JNK phosphorylation in BEAS-2B cells. Inhibition of JNK by small molecule inhibitor SP600125 reduced pneumococci-induced IL-8 mRNA expression and release of IL-8 and IL-6. One regulator of the il8 promoter is JNK-phosphorylated activator protein 1 (AP-1). We showed that S. pneumoniae time-dependently induced DNA binding of AP-1 and its phosphorylated subunit c-Jun with a maximum at 3 to 5 h after infection. Recruitment of Ser(63/73)-phosphorylated c-Jun and RNA polymerase II to the endogenous il8 promoter was found 2 h after S. pneumoniae infection by chromatin immunoprecipitation. AP-1 repressor A-Fos reduced IL-8 release by TLR2-overexpressing HEK293 cells induced by pneumococci but not by TNFα. Antisense-constructs targeting the AP-1 subunits Fra1 and Fra2 had no inhibitory effect on pneumococci-induced IL-8 release. CONCLUSION: S. pneumoniae-induced IL-8 expression by human epithelial BEAS-2B cells depended on activation of JNK and recruitment of phosphorylated c-Jun to the il8 promoter

    Angiogenesis inhibitors in the treatment of prostate cancer

    Get PDF
    Prostate cancer remains a significant public health problem, with limited therapeutic options in the setting of castrate-resistant metastatic disease. Angiogenesis inhibition is a relatively novel antineoplastic approach, which targets the reliance of tumor growth on the formation of new blood vessels. This strategy has been used successfully in other solid tumor types, with the FDA approval of anti-angiogenic agents in breast, lung, colon, brain, and kidney cancer. The application of anti-angiogenic therapy to prostate cancer is reviewed in this article, with attention to efficacy and toxicity results from several classes of anti-angiogenic agents. Ultimately, the fate of anti-angiogenic agents in prostate cancer rests on the eagerly anticipated results of several key phase III studies

    Tumor Angiogenesis and Vascular Patterning: A Mathematical Model

    Get PDF
    Understanding tumor induced angiogenesis is a challenging problem with important consequences for diagnosis and treatment of cancer. Recently, strong evidences suggest the dual role of endothelial cells on the migrating tips and on the proliferating body of blood vessels, in consonance with further events behind lumen formation and vascular patterning. In this paper we present a multi-scale phase-field model that combines the benefits of continuum physics description and the capability of tracking individual cells. The model allows us to discuss the role of the endothelial cells' chemotactic response and proliferation rate as key factors that tailor the neovascular network. Importantly, we also test the predictions of our theoretical model against relevant experimental approaches in mice that displayed distinctive vascular patterns. The model reproduces the in vivo patterns of newly formed vascular networks, providing quantitative and qualitative results for branch density and vessel diameter on the order of the ones measured experimentally in mouse retinas. Our results highlight the ability of mathematical models to suggest relevant hypotheses with respect to the role of different parameters in this process, hence underlining the necessary collaboration between mathematical modeling, in vivo imaging and molecular biology techniques to improve current diagnostic and therapeutic tools

    PGF2α-F-prostanoid receptor signalling via ADAMTS1 modulates epithelial cell invasion and endothelial cell function in endometrial cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increase in cancer cell invasion and microvascular density is associated with a poorer prognosis for patients with endometrial cancer. In endometrial adenocarcinoma F-prostanoid (FP) receptor expression is elevated, along with its ligand prostaglandin (PG)F<sub>2α</sub>, where it regulates expression and secretion of a host of growth factors and chemokines involved in tumorigenesis. This study investigates the expression, regulation and role of a disintegrin and metalloproteinase with thrombospondin repeat 1 (ADAMTS1) in endometrial adenocarcinoma cells by PGF<sub>2α </sub>via the FP receptor.</p> <p>Methods</p> <p>Human endometrium and adenocarcinoma tissues were obtained in accordance with Lothian Research Ethics Committee guidance with informed patient consent. Expression of ADAMTS1 mRNA and protein in tissues was determined by quantitative RT-PCR analysis and immunohistochemistry. Signal transduction pathways regulating ADAMTS1 expression in Ishikawa cells stably expressing the FP receptor to levels seen in endometrial cancer (FPS cells) were determined by quantitative RT-PCR analysis. In vitro invasion and proliferation assays were performed with FPS cells and human umbilical vein endothelial cells (HUVECs) using conditioned medium (CM) from PGF<sub>2α</sub>-treated FPS cells from which ADAMTS1 was immunoneutralised and/or recombinant ADAMTS1. The role of endothelial ADAMTS1 in endothelial cell proliferation was confirmed with RNA interference. The data in this study were analysed by T-test or ANOVA.</p> <p>Results</p> <p>ADAMTS1 mRNA and protein expression is elevated in endometrial adenocarcinoma tissues compared with normal proliferative phase endometrium and is localised to the glandular and vascular cells. Using FPS cells, we show that PGF2α-FP signalling upregulates ADAMTS1 expression via a calmodulin-NFAT-dependent pathway and this promotes epithelial cell invasion through ECM and inhibits endothelial cell proliferation. Furthermore, we show that CM from FPS cells regulates endothelial cell ADAMTS1 expression in a rapid biphasic manner. Using RNA interference we show that endothelial cell ADAMTS1 also negatively regulates cellular proliferation.</p> <p>Conclusions</p> <p>These data demonstrate elevated ADAMTS1 expression in endometrial adenocarcinoma. Furthermore we have highlighted a mechanism whereby FP receptor signalling regulates epithelial cell invasion and endothelial cell function via the PGF<sub>2α</sub>-FP receptor mediated induction of ADAMTS1.</p

    PDGF-C Induces Maturation of Blood Vessels in a Model of Glioblastoma and Attenuates the Response to Anti-VEGF Treatment

    Get PDF
    Recent clinical trials of VEGF inhibitors have shown promise in the treatment of recurrent glioblastomas (GBM). However, the survival benefit is usually short-lived as tumors escape anti-VEGF therapies. Here we tested the hypothesis that Platelet Derived Growth Factor-C (PDGF-C), an isoform of the PDGF family, affects GBM progression independent of VEGF pathway and hinders anti-VEGF therapy.We first showed that PDGF-C is present in human GBMs. Then, we overexpressed or downregulated PDGF-C in a human GBM cell line, U87MG, and grew them in cranial windows in nude mice to assess vessel structure and function using intravital microscopy. PDGF-C overexpressing tumors had smaller vessel diameters and lower vascular permeability compared to the parental or siRNA-transfected tumors. Furthermore, vessels in PDGF-C overexpressing tumors had more extensive coverage with NG2 positive perivascular cells and a thicker collagen IV basement membrane than the controls. Treatment with DC101, an anti-VEGFR-2 antibody, induced decreases in vessel density in the parental tumors, but had no effect on the PDGF-C overexpressing tumors.These results suggest that PDGF-C plays an important role in glioma vessel maturation and stabilization, and that it can attenuate the response to anti-VEGF therapy, potentially contributing to escape from vascular normalization

    In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis

    Get PDF
    Methodology: We have utilized a rational in silico-based approach to demonstrate the design and study of a novel compound that acts as a dual inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) and cyclin-dependent kinase 1 (CDK1). This compound acts by simultaneously inhibiting pro-Angiogenic signal transduction and cell cycle progression in primary endothelial cells. JK-31 displays potent in vitro activity against recombinant VEGFR2 and CDK1/cyclin B proteins comparable to previously characterized inhibitors. Dual inhibition of the vascular endothelial growth factor A (VEGF-A)-mediated signaling response and CDK1-mediated mitotic entry elicits anti-Angiogenic activity both in an endothelial-fibroblast co-culture model and a murine ex vivo model of angiogenesis

    Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme

    Get PDF
    BACKGROUND: The relevance of angiogenesis inhibition in the treatment of glioblastoma multiforme (GBM) should be considered in the unique context of malignant brain tumours. Although patients benefit greatly from reduced cerebral oedema and intracranial pressure, this important clinical improvement on its own may not be considered as an anti-tumour effect. DISCUSSION: GBM can be roughly separated into an angiogenic component, and an invasive or migratory component. Although this latter component seems inert to anti-angiogenic therapy, it is of major importance for disease progression and survival. We reviewed all relevant literature. Published data support that clinical symptoms are tempered by anti-angiogenic treatment, but that tumour invasion continues. Unfortunately, current imaging modalities are affected by anti-angiogenic treatment too, making it even harder to define tumour margins. To illustrate this we present MRI, biopsy and autopsy specimens from bevacizumab-treated patients. Moreover, while treatment of other tumour types may be improved by combining chemotherapy with anti-angiogenic drugs, inhibiting angiogenesis in GBM may antagonise the efficacy of chemotherapeutic drugs by normalising the blood-brain barrier function. SUMMARY: Although angiogenesis inhibition is of considerable value for symptom reduction in GBM patients, lack of proof of a true anti-tumour effect raises concerns about the place of this type of therapy in the treatment of GBM
    corecore