13 research outputs found

    Genetic and functional characterization of disease associations explains comorbidity

    Get PDF
    Understanding relationships between diseases, such as comorbidities, has important socio-economic implications, ranging from clinical study design to health care planning. Most studies characterize disease comorbidity using shared genetic origins, ignoring pathway-based commonalities between diseases. In this study, we define the disease pathways using an interactome-based extension of known disease-genes and introduce several measures of functional overlap. The analysis reveals 206 significant links among 94 diseases, giving rise to a highly clustered disease association network. We observe that around 95% of the links in the disease network, though not identified by genetic overlap, are discovered by functional overlap. This disease network portraits rheumatoid arthritis, asthma, atherosclerosis, pulmonary diseases and Crohn's disease as hubs and thus pointing to common inflammatory processes underlying disease pathophysiology. We identify several described associations such as the inverse comorbidity relationship between Alzheimer's disease and neoplasms. Furthermore, we investigate the disruptions in protein interactions by mapping mutations onto the domains involved in the interaction, suggesting hypotheses on the causal link between diseases. Finally, we provide several proof-of-principle examples in which we model the effect of the mutation and the change of the association strength, which could explain the observed comorbidity between diseases caused by the same genetic alterations

    Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas

    Get PDF
    The landscape of genetic alterations in lung adenocarcinoma derived from Asian patients is largely uncharacterized. Here we present an integrated genomic and transcriptomic analysis of 335 primary lung adenocarcinomas and 35 corresponding lymph node metastases from Chinese patients. Altogether 13 significantly mutated genes are identified, including the most commonly mutated gene TP53 and novel mutation targets such as RHPN2, GLI3 and MRC2. TP53 mutations are furthermore significantly enriched in tumours from patients harbouring metastases. Genes regulating cytoskeleton remodelling processes are also frequently altered, especially in metastatic samples, of which the high expression level of IQGAP3 is identified as a marker for poor prognosis. Our study represents the first large-scale sequencing effort on lung adenocarcinoma in Asian patients and provides a comprehensive mutational landscape for both primary and metastatic tumours. This may thus form a basis for personalized medical care and shed light on the molecular pathogenesis of metastatic lung adenocarcinoma

    Economic benefit analysis of the collaboration between a pumped storage power plant and a thermal power plant

    No full text
    Pumped storage power plants are one of the significant means for regulating power systems holding crucial importance for their secure economical and stable operation. The current research status of economic benefit analysis of pumped storage power plants is introduced and the static and dynamic economic benefit analysis method of the collaboration between a pumped storage power plant and a thermal power plant is put forward. Moreover the collaboration between a 4×300 MW pumped storage power plant and a 2×1 000 MW thermal power plant in a region is taken as an example to analyze the economic benefits resulting from their collaboration. The detailed calculation methods for the economic benefits of pumped storage units such as peak shaving and valley filling frequency modulation phase modulation and contingency reserves are presented. These calculations can serve as a rational foundation for the collaboration between pumped storage power plants and thermal power plants

    Wafer‐scale single‐crystalline MoSe2 and WSe2 monolayers grown by molecular‐beam epitaxy at low‐temperature — the role of island‐substrate interaction and surface steps

    No full text
    Abstract Ultrathin two‐dimensional transition‐metal dichalcogenides (TMDs) have been pursued extensively in recent years for interesting physics and application potentials. For the latter, it is essential to synthesize crystalline TMD monolayers at wafer‐scale. Here, we report growth of single‐crystalline MSe2 (M = Mo, W) monolayers at wafer‐scale by molecular‐beam epitaxy at low temperatures (200–400°C) on nominally flat Au(1 1 1) substrates. The epifilms have low intrinsic defect densities of low 1012 cm−2. The grown films have then been exfoliated and transferred onto SiO2/Si by a wet chemical process, on which some optical measurements are performed, revealing high spatial uniformity of the samples. We also establish that MSe2 grows on Au via the van der Waals epitaxy mechanism, where a continuous film extends across the whole surface, overhangs atomic‐layer steps on substrate. We identify that the growth of highly crystalline MSe2 is promoted by an enhanced interaction between Au substrate and MSe2 islands rather than by the guidance of surface steps on substrate. The latter only arrests MSe2 lateral growth if they are multilayer high. Key points MBE growth of wafer‐scale highly crystalline TMD monolayers at low‐temperature is achieved. Island‐substrate interaction is found to play a critical role in vdW epitaxy of single‐crystalline TMDs on on‐axis substates. The TMD monolayers are of high uniformity and low intrinsic defect density
    corecore