65 research outputs found

    Machine learning suggests sleep as a core factor in chronic pain

    Get PDF
    Patients with chronic pain have complex pain profiles and associated problems. Subgroup analysis can help identify key problems. We used a data-based approach to define pain phenotypes and their most relevant associated problems in 320 patients undergoing tertiary pain management. Unsupervised machine learning analysis of parameters "pain intensity," "number of pain areas," "pain duration," "activity pain interference," and "affective pain interference," implemented as emergent self-organizing maps, identified 3 patient phenotype clusters. Supervised analyses, implemented as different types of decision rules, identified "affective pain interference" and the "number of pain areas" as most relevant for cluster assignment. These appeared 698 and 637 times, respectively, in 1000 cross-validation runs among the most relevant characteristics in an item categorization approach in a computed ABC analysis. Cluster assignment was achieved with a median balanced accuracy of 79.9%, a sensitivity of 74.1%, and a specificity of 87.7%. In addition, among 59 demographic, pain etiology, comorbidity, lifestyle, psychological, and treatment-related variables, sleep problems appeared 638 and 439 times among the most important characteristics in 1000 cross-validation runs where patients were assigned to the 2 extreme pain phenotype clusters. Also important were the parameters "fear of pain," "self-rated poor health," and "systolic blood pressure." Decision trees trained with this information assigned patients to the extreme pain phenotype with an accuracy of 67%. Machine learning suggested sleep problems as key factors in the most difficult pain presentations, therefore deserving priority in the treatment of chronic pain.Peer reviewe

    Evidence of Compromised Blood-Spinal Cord Barrier in Early and Late Symptomatic SOD1 Mice Modeling ALS

    Get PDF
    Background: The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease. Methodology/Principal Findings: Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage. Conclusions/Significance: Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease

    Computational Prediction and Experimental Verification of New MAP Kinase Docking Sites and Substrates Including Gli Transcription Factors

    Get PDF
    In order to fully understand protein kinase networks, new methods are needed to identify regulators and substrates of kinases, especially for weakly expressed proteins. Here we have developed a hybrid computational search algorithm that combines machine learning and expert knowledge to identify kinase docking sites, and used this algorithm to search the human genome for novel MAP kinase substrates and regulators focused on the JNK family of MAP kinases. Predictions were tested by peptide array followed by rigorous biochemical verification with in vitro binding and kinase assays on wild-type and mutant proteins. Using this procedure, we found new ‘D-site’ class docking sites in previously known JNK substrates (hnRNP-K, PPM1J/PP2Czeta), as well as new JNK-interacting proteins (MLL4, NEIL1). Finally, we identified new D-site-dependent MAPK substrates, including the hedgehog-regulated transcription factors Gli1 and Gli3, suggesting that a direct connection between MAP kinase and hedgehog signaling may occur at the level of these key regulators. These results demonstrate that a genome-wide search for MAP kinase docking sites can be used to find new docking sites and substrates

    Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression

    Get PDF
    corecore