16 research outputs found

    Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall

    Get PDF
    Intense rainfall events significantly affect Alpine and Alaskan glaciers through enhanced melting, ice-flow acceleration and subglacial sediment erosion, yet their impact on the Greenland ice sheet has not been assessed. Here we present measurements of ice velocity, subglacial water pressure and meteorological variables from the western margin of the Greenland ice sheet during a week of warm, wet cyclonic weather in late August and early September 2011. We find that extreme surface runoff from melt and rainfall led to a widespread acceleration in ice flow that extended 140 km into the ice-sheet interior. We suggest that the late-season timing was critical in promoting rapid runoff across an extensive bare ice surface that overwhelmed a subglacial hydrological system in transition to a less-efficient winter mode. Reanalysis data reveal that similar cyclonic weather conditions prevailed across southern and western Greenland during this time, and we observe a corresponding ice-flow response at all land- and marine-terminating glaciers in these regions for which data are available. Given that the advection of warm, moist air masses and rainfall over Greenland is expected to become more frequent in the coming decades, our findings portend a previously unforeseen vulnerability of the Greenland ice sheet to climate change

    Widespread movement of meltwater onto and across Antarctic ice shelves

    Get PDF
    Surface meltwater drains across ice sheets, forming melt ponds that can trigger ice-shelf collapse, acceleration of grounded ice flow and increased sea-level rise. Numerical models of the Antarctic Ice Sheet that incorporate meltwater’s impact on ice shelves, but ignore the movement of water across the ice surface, predict a metre of global sea-level rise this century5 in response to atmospheric warming. To understand the impact of water moving across the ice surface a broad quantification of surface meltwater and its drainage is needed. Yet, despite extensive research in Greenland and observations of individual drainage systems in Antarctica, we have little understanding of Antarctic-wide surface hydrology or how it will evolve. Here we show widespread drainage of meltwater across the surface of the ice sheet through surface streams and ponds (hereafter ‘surface drainage’) as far south as 85° S and as high as 1,300 metres above sea level. Our findings are based on satellite imagery from 1973 onwards and aerial photography from 1947 onwards. Surface drainage has persisted for decades, transporting water up to 120 kilometres from grounded ice onto and across ice shelves, feeding vast melt ponds up to 80 kilometres long. Large-scale surface drainage could deliver water to areas of ice shelves vulnerable to collapse, as melt rates increase this century. While Antarctic surface melt ponds are relatively well documented on some ice shelves, we have discovered that ponds often form part of widespread, large-scale surface drainage systems. In a warming climate, enhanced surface drainage could accelerate future ice-mass loss from Antarctic, potentially via positive feedbacks between the extent of exposed rock, melting and thinning of the ice sheet

    Trends and connections across the Antarctic cryosphere

    Get PDF
    Satellite observations have transformed our understanding of the Antarctic cryosphere. The continent holds the vast majority of Earth’s fresh water, and blankets swathes of the Southern Hemisphere in ice. Reductions in the thickness and extent of floating ice shelves have disturbed inland ice, triggering retreat, acceleration and drawdown of marine-terminating glaciers. The waxing and waning of Antarctic sea ice is one of Earth’s greatest seasonal habitat changes, and although the maximum extent of the sea ice has increased modestly since the 1970s, inter-annual variability is high, and there is evidence of longer-term decline in its extent

    The Greenland and Antarctic ice sheets under 1.5â—¦C global warming

    Get PDF
    Even if anthropogenic warming were constrained to less than 2°C above pre-industrial, the Greenland and Antarctic ice sheets will continue to lose mass this century, with rates similar to those observed over the last decade. However, nonlinear responses cannot be excluded, which may lead to larger rates of mass loss. Furthermore, large uncertainties in future projections still remain, pertaining to knowledge gaps in atmospheric (Greenland) and oceanic (Antarctica) forcing. On millennial timescales, both ice sheets have tipping points at or slightly above the 1.5-2.0°C threshold; for Greenland, this may lead to irreversible mass loss due to the surface mass balance elevation feedback, while for Antarctica, this could result in a collapse of major drainage basins due to ice-shelf weakening

    Understanding global sea levels: past, present and future

    Get PDF
    The coastal zone has changed profoundly during the 20th century and, as a result, society is becoming increasingly vulnerable to the impact of sea-level rise and variability. This demands improved understanding to facilitate appropriate planning to minimise potential losses. With this in mind, the World Climate Research Programme organised a workshop (held in June 2006) to document current understanding and to identify research and observations required to reduce current uncertainties associated with sea-level rise and variability. While sea levels have varied by over 120 m during glacial/interglacial cycles, there has been little net rise over the past several millennia until the 19th century and early 20th century, when geological and tide-gauge data indicate an increase in the rate of sea-level rise. Recent satellite-altimeter data and tide-gauge data have indicated that sea levels are now rising at over 3 mm year−1. The major contributions to 20th and 21st century sea-level rise are thought to be a result of ocean thermal expansion and the melting of glaciers and ice caps. Ice sheets are thought to have been a minor contributor to 20th century sea-level rise, but are potentially the largest contributor in the longer term. Sea levels are currently rising at the upper limit of the projections of the Third Assessment Report of the Intergovernmental Panel on Climate Change (TAR IPCC), and there is increasing concern of potentially large ice-sheet contributions during the 21st century and beyond, particularly if greenhouse gas emissions continue unabated. A suite of ongoing satellite and in situ observational activities need to be sustained and new activities supported. To the extent that we are able to sustain these observations, research programmes utilising the resulting data should be able to significantly improve our understanding and narrow projections of future sea-level rise and variabilit

    The 1988-2003 Greenland ice sheet melt extent by passive microwave satellite data and a regional climate model

    Full text link
    Measurements from ETH-Camp and JAR1 AWS (West Greenland) as well as coupled atmosphere-snow regional climate simulations have highlighted flaws in the cross-polarized gradient ratio (XPGR) technique used to identify melt from passive microwave satellite data. It was found that dense clouds (causing notably rainfall) on the ice sheet severely perturb the XPGR melt signal. Therefore, the original XPGR melt detection algorithm has been adapted to better incorporate atmospheric variability over the ice sheet and an updated melt trend for the 1988–2003 period has been calculated. Compared to the original algorithm, the melt zone area increase is eight times higher (from 0.2 to 1.7% year−1). The increase is higher with the improved XPGR technique because rainfall also increased during this period. It is correlated to higher atmospheric temperatures. Finally, the model shows that the total ice sheet runoff is directly proportional to the melt extent surface detected by satellites. These results are important for the understanding of the effect of Greenland melting on the stability of the thermohaline circulation

    Recent atmospheric warming and retreat of ice shelves on the Antarctic Peninsula

    No full text
    IN 1978 Mercer1 discussed the probable effects of climate warming on the Antarctic Ice Sheet, predicting that one sign of a warming trend in this region would be the retreat of ice shelves on the Antarctic Peninsula. Analyses of 50-year meteorological records have since revealed atmospheric warming on the Antarctic Peninsula2,3, and a number of ice shelves have retreated4–8. Here we present time-series of observations of the areal extent of nine ice shelves on the Antarctic Peninsula, showing that five northerly ones have retreated dramatically in the past fifty years, while those further south show no clear trend. Comparison with airtemperature data shows that the pattern and magnitude of ice-shelf retreat is consistent with the existence of an abrupt thermal limit on iceshelf viability, the isotherm associated with this limit having been driven south by the atmospheric warming. Ice shelves therefore appear to be sensitive indicators of climate change
    corecore