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Abstract 

The coastal zone has changed profoundly during the 20th century and as a result society is 

becoming increasingly vulnerable to the impact of sea-level rise and variability.  This 

demands improved understanding to facilitate appropriate planning to minimize potential 

losses.  With this in mind, the World Climate Research Programme organized a 

workshop (held June 2006) to document current understanding and to identify research 

and observations required to reduce current uncertainties associated with sea-level rise 

and variability.  While sea levels have varied by over 120 m during glacial/interglacial 

cycles, there has been little net rise over the past several millennia until the 19th century 

and early 20th century when geological and tide-gauge data indicate an increase in the 

rate of sea-level rise.  Recent satellite-altimeter data and tide-gauge data indicate sea 

levels are now rising at over 3 mm yr-1.  The major contributions to 20th and 21st century 

sea-level rise are thought to be a result of ocean thermal expansion and melting of 

glaciers and ice caps.  Ice sheets are thought to have been a minor contributor to 20th 

century sea-level rise but are potentially the largest contributor in the longer-term.  Sea 

levels are currently rising at the upper limit of the projections of the Third Assessment 

Report of the Intergovernmental Panel on Climate Change, and there is increasing 

concern of potentially large ice-sheet contributions during the 21st century and beyond, 

particularly if greenhouse gas emissions continue unabated.  A suite of ongoing satellite 

and in situ observational activities need to be sustained and new activities supported.  To 

the extent that we are able to sustain these observations, research programmes utilizing 

the resulting data should be able to significantly improve our understanding and narrow 

projections of future sea-level rise and variability.   
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Introduction 

 

Coastal zones have changed profoundly during the 20th century, primarily due to growing 

populations and increasing urbanization and in 1990, 23% of the world’s population (or 

1.2 billion people) lived both within a 100 km distance and 100 m elevation of the coast 

at densities about three times higher than the global average (Small and Nicholls 2003).  

As a consequence the coastal zone and its inhabitants are becoming increasingly 

vulnerable to flooding and storm events, in particular against a background of rising sea 

level. 

 

Sea-level rise is an important aspect of anthropogenic climate change.  By 2010, 20 out 

of 30 mega-cities will be on the coast, with many threatened by sea-level rise (Nicholls 

1995).  With coastal development continuing at a rapid pace, society is becoming 

increasingly vulnerable to sea-level rise and variability—as Hurricane Katrina 

demonstrated in New Orleans in 2005 (for example Graumann et al. 2005).  For projected 

sea-level rise during the 21st century, many millions of people will have to respond to 

coastal flooding events each year.  With appropriate planning and adaptation measures, 

this number can be reduced dramatically (Nicholls et al. this volume).  Rising sea levels 

will contribute to increased severity of storm-surge events, even if storm intensities do 

not increase in response to the warming of the oceans.  Rising sea levels will also 

contribute to the recession of the world’s sandy beaches, 70% of which have been 

retreating over the past century with less than 10% prograding (Bird 1993).  Low-lying 

islands are also vulnerable. 
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An improved understanding of sea-level rise and variability will help reduce the 

uncertainties associated with sea-level rise projections, thus contributing to more 

effective coastal planning and management.  Adaptation measures to minimize the 

potential losses include strengthened building codes, restrictions on where, what and how 

to build, and developing local infrastructures that is able to cope better with flooding.   

 

There are significant uncertainties in understanding how sea level has changed on 

millennial to decadal time scales and what contributes to this change.  As a result, there 

are significant uncertainties about how sea level will change in the future.  To address 

these uncertainties, the World Climate Research Programme (WCRP) organised a 

workshop on Understanding Sea-level Rise and Variability.  The workshop, supported by 

many sponsors and hosted by the Intergovernmental Oceanographic Commission at 

UNESCO headquarters in Paris June 6-9, 2006, brought together representatives from all 

relevant disciplines.  In total, 163 scientists from 29 countries, including participants 

from developing nations and students as well as experienced research scientists and 

leading program managers, attended the Workshop.  The goals of the Workshop were to 

identify the uncertainties associated with past and future sea-level rise and variability, as 

well as the research and observational activities needed for narrowing these uncertainties.  

The Workshop was also conducted in support of the Global Earth Observation System of 

Systems (GEOSS) 10-Year Implementation Plan (http://earthobservations.org/docs/10-

Year%20Implementation%20Plan.pdf); as such, it helped develop international and 
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interdisciplinary scientific consensus for those observational requirements needed to 

address sea-level rise and its variability.   

 

As an introduction to this volume on sea-level rise, we will draw heavily on the results 

from the workshop (Church et al. 2007), including the workshop’s statement available at 

http://wcrp.wmo.int/AP_SeaLevel.html and presentations and posters at the workshop.  

We will briefly review historical sea-level changes, attempting to synthesise the various 

estimates derived from different observational methods.  We also review the 

contributions to 20th century sea-level rise, briefly discuss the impacts of sea-level rise 

and the outlook for the future.   

 

Historical sea-level rise 

 

Sea level has varied by more than 120 m during glacial-interglacial cycles (Figure 1) as 

the major ice sheets formed and decayed, particularly in high northern-hemisphere 

latitudes (Lambeck and Chappell 2001).  Paleo data indicate that sea level was 4 to 6 m 

(or more) above present day sea levels during the last interglacial period, about 125,000 

years ago (Stirling et al. 1998; Overpeck et al. 2006).  Climate and ice-sheet model 

simulations (Otto-Bleisner et al. 2006) indicate that Greenland was about 3° C warmer 

than today and that the Northern Hemisphere ice sheets contributed 2.2 to 3.4 m to the 

higher sea level, with the majority of the higher sea level coming from the partial melting 

of the Greenland ice sheet.  From the last interglacial to about 20,000 years ago sea level 

fell by over 120 m.  Following the last glacial maximum about 20,000 years ago, sea 
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level rose by more than 120 m, at an average rate of about 10 mm yr-1 (1 m per century), 

and with peak rates of about 40 mm yr-1 (4 m per century), until about 7,000 years ago 

(Fairbanks, 1989; Lambeck et al. 2002).  Sea level rose much more slowly over the past 

7,000 years (Figure 1b; Lambeck 2002).  Paleo data over centuries to millenia constrain 

estimates of sea-level change and thus of on-going ice-sheet contributions.  For example, 

sea level about 2,000 years ago can be deduced by examining fish tanks built by the 

ancient Romans.  Because the tanks had to be at sea level for the sluice gates to function, 

one can precisely estimate sea level during the period of their use.  Comparison of this 

level with historical records (after correcting for land motion) indicates that there has 

been little net change in sea level from 2000 years ago until the start of the 19th century 

(Lambeck et al. 2004).  

 

Changes in local sea level estimated from sediment cores collected in salt marshes reveal 

an increase in the rate of sea-level rise in the western and eastern Atlantic Ocean during 

the 19th century and early 20th century (Donelly et al. 2004; Gehrels et al. 2005; Gehrels 

et al. 2006), consistent with the few long tide-gauge records from Europe and North 

America (Woodworth 1999).  Correcting these local sea-level trends for estimates of 

large-scale vertical land motion associated with changing surface loads on the earth 

(GIA, glacial isostatic adjustment) results in rates of sea-level rise close to zero in the 

early part of the sedimentary record and in good agreement with the tide-gauge data for 

the latter part of the record.  Plotting these early trends as zero (Figure 2) also results in 

good agreement between the 20th century estimates of sea-level rise determined from the 

sedimentary record and from tide gauges (see below).   
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From 1993 to the end of 2006, near-global measurements of sea level (between 66°N and 

66°S) made by high precision satellite altimeters indicate global average sea level has 

been rising at 3.1 ± 0.4 mm yr-1 (Beckley et al. 2007; Figure 3a; Unless stated otherwise, 

all errors estimates quoted are one standard deviation).  This rate is faster (by almost a 

factor of two) than the average rate of rise during the 20th century, which in turn was an 

order of magnitude larger than the rate of rise over the two millennia prior to the 18th 

century.  Church and White (2006) combined empirical orthogonal functions calculated 

from satellite altimeter data with coastal and island tide-gauge data (Woodworth and 

Player 2003), corrected for glacial isostatic adjustment (e.g. Davis and Mitrovica 1996) to 

estimate (‘reconstruct’) global average sea level.  They showed that sea level rose by just 

under 20 cm between 1870 and 2001, at an average rate of 1.7 mm yr-1 during the 20th 

century and with an increase in the rate of rise over this period (Figure 3).  Jevrejeva et al. 

(2006) used a different technique but obtained a similar global curve.  The time series of 

global-averaged sea level is consistent with the geological data (Figure 2), the few long 

records of sea level from coastal tide gauges and for the period of high-quality satellite-

altimeter data since 1993 (Figure 3).   

 

Estimates of sea-level trends during 20 year periods, with the start of each period 

incremented by one year, indicate significant variability in the rate of sea-level rise.  Prior 

to the 1930s, the rate of sea-level rise was generally less than 1 mm yr-1 (Figure 3b).  

From the late 1930s to the late 1950s, the rate of sea-level rise was greater than 2 mm yr-

1, peaking at about 2.5 mm yr-1.  From 1963 to 1991 there were a series of explosive 
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volcanic eruptions which caused cooling (and hence contraction) of the upper ocean and 

presumably offsetting some of the increase in sea-level rise that would otherwise have 

been present (Church et al. 2005; Church and White 2006; Gregory et al. 2006; Gleckler 

et al. 2006a and b) and the rate of sea-level rise fell to less than 2 mm yr-1 from the late 

1950s to the mid-to-late 1980s.  For the 20 year periods centred on 1992 and later, the 

rate of sea-level rise is close to the value estimated using satellite altimeters of over 3 mm 

yr-1.  Indeed, the rate of rise over the five most recent 20-year periods is 25% greater than 

the next largest set of values during the 1940s.  A histogram of these rates of sea-level 

rise has a mean value of about 1.4 mm yr-1 and the five most recent values are at the 

extreme end of the histogram at about two standard deviations from the mean value.  

These results suggest that the rate of global averaged sea-level rise since the mid-1980s is 

indeed unusual, in agreement with Holgate and Woodworth (2004) who pointed to the 

anomalous 1990s rise based on tide-gauge data.  Woodworth et al. (submitted) recently 

reviewed the evidence of changes in the rate of sea-level rise and concluded there was a 

strong acceleration in the early 20th century, and a weaker deceleration during the mid- to 

late 20th century, which Church et al. (2005) and Church and White (2006) argue is at 

least partly a result of explosive volcanic eruptions.   

 

The satellite-altimeter data indicate that the rate of rise is not uniform around the globe.  

The spatial patterns reflect climate variability with a greater rate of rise in the western 

Pacific compared with the eastern Pacific as a result of the transition from El Niño-like 

conditions at the start of the satellite altimeter record to more La Niña-like conditions at 

the end of the satellite altimeter record (Figure 4a).  There are also local maxima in the 
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rate of sea-level rise at the poleward boundaries of the subtropical gyres in the South and 

North Pacific Ocean and in the Indian Ocean, which appear as maxima at about 40°N and 

40°S in the zonal average of the rate of sea-level rise.  In the southern hemisphere, this is 

a result of the decadal increase of the Southern Annular mode (SAM), which results in 

enhanced Ekman convergence and downward displacement of isopycnals at these 

latitudes (Roemmich et al. 2007).  Over the 1950 to 2000 period, the reconstructed sea 

levels (Church et al. 2004) also indicate that the rate of sea-level rise is not globally 

uniform, but the short-term climate variability (which are clearly seen in the altimeter 

record), such as El Niño/La Niña and other climate variability, have a weaker impact on 

the multi-decadal trends (Church et al., 2004).   

 

Impacts of sea-level rise are determined by sea-level changes relative to the local land 

rather than the global-average sea-level changes discussed above.  Vertical land 

movements can occur through natural geological processes resulting in uplift or 

submergence, or from man-made influences, usually resulting in submergence.  The 

process with the largest spatial scale (glacial isostatic adjustment, GIA) results from 

global-scale changes in mass loading of the Earth’s surface as a result of the melting of 

ice sheets and the associated increased mass of the oceans.  Today, there are ongoing 

viscoelastic changes in the solid earth as a result of the changing loads of the ice sheets 

during the last glacial/interglacial cycle (Lambeck and Nakiboglu 1984; Peltier 1998) and 

the present day elastic response to recent melting (Mitrovica et al. 2001).  In addition to 

these large-scale motions, there are local tectonic motions.  In a number of deltaic regions 

with high population densities, ground water withdrawal, oil and gas extraction, 
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compacting sediments and reduced supply of new sediments as a result of dam building 

and altered river flows (Ericson et al. 2006) results in significant subsidence rates, further 

exacerbating the impact of sea-level rise.   

 

Contributions to 20th century sea-level rise 

 

The two main reasons for sea-level rise are thermal expansion of ocean waters as they 

warm, and increase in the ocean mass, principally from land-based sources of ice 

(glaciers and ice caps, and the ice sheets of Greenland and Antarctica). Global warming 

from increasing greenhouse gas concentrations is a significant driver of both 

contributions to sea-level rise.  

 

Ocean-thermal expansion 

 

For the 1993 to 2003 period, a variety of analysis techniques have been used to estimate 

the rate of global-averaged and regional ocean-thermal expansion.  The results of 

Antonov et al. (2005) and Ishii et al. (2006) indicate a rate of ocean thermal expansion of 

about 1.2 mm yr-1.  A number of studies have shown that altimetric sea-level heights are 

highly correlated with heat content and steric heights (White and Tai, 1995, Gilson et al., 

1998, Willis et al., 2003, 2004).  This correlation can be exploited to improve estimates 

of ocean thermal expansion and heat content (0-750 m) as shown by Willis et al. (2004).  

The altimetric height correlation with subsurface temperature was used to form a first 

guess of the heat-content (or thermosteric height) variability, and then anomalies from 
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this first guess were objectively mapped using the subsurface data.  The resultant estimate 

of ocean thermal expansion for 1993 to 2003 (Willis et al. 2004) was 1.6 mm yr-1.   

 

An alternative approach to fill the gaps in the sparse in situ data base is a reconstruction 

of ocean thermal expansion based on empirical orthogonal functions in an approach 

similar to that used by Church et al. (2004) to estimate changes in sea level (Domingues 

et al. submitted).   

 

While these and other estimates have similar rates averaged over 1993-2003, there are 

significant interannual differences between the estimates and all are strongly dependent 

on eXpendable-Bathy-Thermograph (XBT) data.  When the recent Argo data was added 

to this time series there was an apparent ocean cooling since 2003 (Lyman et al. 2006), 

which has since been shown to be the result of a time-variable warm bias in the XBT 

data, resulting in too large an estimate of thermal expansion from 1993 to 2003, and 

errors in the Argo data (Willis et al. 2007), resulting in unrealistic estimates of ocean 

cooling since 2003.  Wijffels et al. (2008) has recently shown that the significant XBT 

warm biases identified by Gouretski and Koltermann (2007) are primarily a result of 

errors in the XBT fall rate which varies over decades (presumably as a result of small 

changes in the manufacture of the XBTs).  Revised estimates of ocean thermal expansion 

for the upper 700 m are currently being computed and are likely to be lower than earlier 

estimates; revised estimates may be a little less than 1 mm yr-1 for 1993 to 2003.   
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The regional distribution of sea-level variability and rise is largely a result of the regional 

distribution of ocean thermal expansion.  As a result, the spatial pattern of trends (relative 

to their respective global means) of sea-level rise measured by satellite altimeter (Figure 

4a) and ocean thermal-expansion computed using a reduced space optimal interpolation 

technique (Figure 4b; Domingues et al. submitted) are very similar.  In constructing 

Figure 4b, spatial empirical orthogonal functions (EOFs) computed from altimeter data 

were used but similar results are found when EOFs computed from the dynamic height 

data of Guinehut et al. (2006) are used.   

 

From 1955 to 2003, Antonov et al. (2005) estimated ocean thermal expansion over the 

upper 700 m contributed about 0.3 mm yr-1 to sea-level rise and 0.4 mm yr-1 over 3000 m, 

less than 25% of the observed rise over the same period.  However, there are significant 

XBT biases in the data set and there are major gaps in the data base.  The estimated rate 

of thermal expansion is sensitive to how these data gaps are filled (see also AchutaRao et 

al. 2007).  A reconstruction of ocean thermal expansion based on empirical orthogonal 

functions using the XBT fall rate corrections of Wijffels et al. (2008) results in a 

somewhat larger value than earlier estimates (Domingues et al. submitted), about 0.5 mm 

yr-1 for the upper 700 m for 1960 to 2003.  Gille (2008) found a similar sensitivity to gaps 

in the observational data base in the Southern Ocean and concluded that the previous 

results (Antonov et al. 2005) were biased low.   

 

Glaciers and ice caps 
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Glaciers and ice caps (i.e. excluding the Greenland and Antarctic ice sheets) together 

contain enough water to raise sea level by between 15 and 37 cm (Lemke et al. 2007).  

Despite their size, they are thought to be the second largest contributor to sea-level rise 

during the 20th century, and are likely to be the second largest during at least the early 

21st century (Meier et al. 2007).  Kaser et al. (2006) summarise recent estimates of the 

contribution of the melting of glaciers and ice caps to sea-level rise.  Including the 

smaller glaciers surrounding Greenland and Antarctica, they estimate a contribution to 

sea-level rise of about 0.4 mm yr-1 from 1961 to 1990 increasing to about 1.0 mm yr-1 

from 2001-2004.  The most important impact is from large glaciers in regions with heavy 

precipitation, such as the coastal mountains around the Gulf of Alaska, Patagonia and 

Tierra del Fuego in South America.  The time-series from Dyurgerov and Meier (2005, 

our Figure 5) is typical of the estimates and shows the increasing contribution of glaciers 

and ice caps since 1960.  Lemke et al. (2007) conclude that the glacier wastage is likely 

to have been a response to post-1970 warming.  One of the estimates summarized by 

Kaser et al., that of Cogley (2005), shows a larger contribution to sea-level rise in the 

1940s (but with larger error bars) at the same time as global averaged sea level is 

estimated to be rising relatively rapidly (Figure 3).   

 

The Ice Sheets of Greenland and Antarctica 

 

The ice sheets of Greenland and Antarctica have the potential to make the largest 

contribution to sea-level rise, but they are also the greatest source of uncertainty.  At the 

time of the Third Assessment Report (TAR) of the IPCC (Church et al. 2001), direct 
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observational estimates of the balance of the Greenland and Antarctic ice sheets were too 

imprecise to be of value in assessing the global sea-level budget.  Instead, the TAR relied 

on models to estimate that the ice sheets could be contributing anywhere between zero 

and 0.5 mm yr-1 to 20th century sea-level rise.  Since 1990, there has been a rapid increase 

in the quantity and quality of remote sensing data available for estimating changes in the 

mass of both ice sheets.  For Greenland, new estimates depend on the use of airborne 

laser altimeters, satellite altimeters (Krabill et al. 2004; Thomas et al., 2006), synthetic 

aperture radar (Rignot and Kangaratnam, 2006) and most recently time variable gravity 

measurements (Velicogna and Wahr 2005; Ramillien et al. 2006; Luthcke et al. 2006; 

Chen et al. 2006). 

 

Since 1990 there has been increased snow accumulation at high elevation on the 

Greenland ice sheet (Zwally et al. 2005), while at lower elevation there has been more 

widespread surface melting and a significant increase in the flow of outlet glaciers 

(Rignot and Kanagaratnam, 2006).  The net result is a decrease in the mass of the 

Greenland ice sheet — a positive contribution to sea-level rise of perhaps 

0.2 ± 0.1 mm yr-1 (90% confidence range; Lemke et al. 2007) — and suggestions of an 

acceleration of this contribution (Rignot and Kanagaratnam, 2006; Chen et al. 2006).  

However, the time series are short and the estimates may not be representative of longer 

periods and of the twentieth century as a whole.   

 

For the Antarctic Ice Sheet, the uncertainty is even larger.  As temperatures increase, 

snowfall is projected to increase, partially offsetting other contributions to sea-level rise.  
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However, no significant increase in snowfall has been detected over the last 50 years 

(Monaghan et al. 2006).  The West Antarctic Ice Sheet is grounded below sea-level and 

warm ocean water can penetrate beneath the fringing ice shelves, melting the ice sheet at 

its base and leading to increased flow of outlet glaciers (Thomas et al. 2004), as observed 

on the Antarctic Peninsular following the collapse of the Larsen B Ice Shelf (Scambos et 

al. 2004; Rignot et al. 2004).  However, those processes are poorly understood and thus 

not adequately modelled.  Since 1993, moderate increases in ice thickness in East 

Antarctica (Zwally et al. 2005; Davis et al. 2005) do not appear to compensate for the 

mass loss due to the increased glacier flow on the Antarctic Peninsula and the West 

Antarctic Ice Sheet (Zwally et al. 2005; Davis et al., 2005; Joughin et al. 2003; Thomas et 

al. 2004).  The net result is estimated to be a contribution to sea-level rise of 0.2 ± 0.4 

mm yr-1 (90% confidence range; Lemke et al. 2007).  Note also that modelling studies 

(e.g. Huybrechts and de Wolde 1999) argue that because of the very long response time 

of ice sheets, the Antarctic Ice Sheet is still responding to changes since the last ice age 

and thus contributing to present day sea-level rise.   

 

Changes in Terrestrial storage 

 

As part of the hydrological cycle, water is exchanged between the oceans and 

“reservoirs” on land (lakes, rivers, soil moisture, groundwater, ice sheets, permafrost).  

Natural (e.g. El Niño, volcanic eruptions), man-made (e.g. dams, irrigation) and climate-

driven changes to precipitation, evaporation, soil moisture and glaciers and ice caps affect 

this cycle.   
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The largest terrestrial storage changes arising from climate variations on interannual to 

decadal scales are a result of changes in groundwater storage, followed by changes in soil 

moisture and then snow cover (Ngo-duc et al. 2005; Milly et al. 2003).  Ngo-duc et al. 

(2005) found that during the 1970s about 4 mm (equivalent sea level) more than normal 

was held in terrestrial storage, but over the 50 year period 1950 to 2000 there was little 

net change.  For the period since the early 1990s, a range of terrestrial water models have 

been inter-compared and GRACE gravity data is also being used to test these models and 

to directly estimate changes in terrestrial water storage.   

 

As well as these climate-driven changes in terrestrial water storage, human activities also 

affect terrestrial storage and sea level.  These activities include mining of groundwater, 

deforestation, desertification, wetland loss or drainage, surface water diversion and dam 

building.  However, the sum of these terms is poorly known.  The contribution from 

sedimentation in the ocean is small (Church et al., 2001).   

 

Reducing Uncertainties 

 

Improving our understanding of sea-level rise and variability, as well as reducing the 

associated uncertainties, depends critically on the availability of adequate observations.  

The WCRP workshop (http://wcrp.ipsl.jussieu.fr/Workshops/SeaLevel/), helped develop 

international scientific consensus for those observational requirements needed to address 

sea-level rise and its variability.  These requirements include sustaining existing 



 18

systematic observations, as well as the development of new and improved observing 

systems. 

 

An overarching observational requirement is the need for an open data policy, together 

with timely, unrestricted access for all.  Using the Argo and Jason policies 

(http://www.coriolis.eu.org/cdc/argo/argo_data_management_handbook.pdf and 

http://podaac-www.jpl.nasa.gov/about/) as a guide, this access would include real-time, 

high-frequency sea-level data from the GLOSS tide gauges and co-located GPS stations, 

as well as data from satellite missions and in situ observing systems.  Further 

requirements include the need for appropriate data archaeology—retrieving and making 

accessible historical, paper-based sea-level records, especially those extending over long 

periods and in the Southern Hemisphere.  An immediate priority for paper records is 

electronic scanning and making them available for subsequent digitization.  Moreover, 

satellite observations need to be as continuous as possible, with overlap between 

successive missions.  There also needs to be a corresponding collection of appropriate in 

situ observations for calibration and validation.  Ongoing satellite and in situ observing 

systems should adhere to the Global Climate Observing System (GCOS) observing 

principles (http://gosic.org/GCOS/GCOS climate_monitoring_principles.htm). 

 

The existing systems that should be sustained include those observing sea level – the 

Jason series of satellite altimeters, as well as completing the GLOSS network of 

approximately 300 gauges (each with high-frequency sampling, real-time reporting, and 

geodetic positioning).  In order to estimate the change in sea level due to steric effects, 
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the Argo array – which achieved global coverage of the ice-free oceans with 3,000 

profiling floats in November 2007 – needs to be sustained.  To estimate the change in sea 

level due to changes in ocean mass due to melting ice caps and glaciers and changes in 

terrestrial water storage, observations of the time-varying gravity field from GRACE 

need to be sustained. 

 

Additional existing systems to be sustained are those required to observe changes in ice 

sheet and glacier topography and thickness: satellites utilizing radar (e.g., Envisat, GFO 

and Sentinel-3) and laser (ICESat and, once launched, CryoSat-2) altimeters, 

complemented by aircraft and in situ observations.  All of these measurements require 

that the International Terrestrial Reference Frame (ITRF), which integrates the geodetic 

components – SLR, VLBI, DORIS, and GNSS (GPS, together with GLONASS & 

Galileo once launched), must be made more robust and stable than is currently the case.  

Finally, higher spatial resolutions observations from GOCE, once launched, and other 

stand-alone missions are needed to obtain improved models of the planetary gravity field, 

including its temporal variation, such that we can separate changes in sea-surface shape, 

which reflect mass redistribution and density changes from changes in the geopotential 

which reflect the mass distribution only.   

 

New and improved observing systems which need to be developed include those directed 

at changes in the ocean volume, specifically extending the Argo-type capability to enable 

the collection of similar observations under the sea ice, as well as the design and 

implementation of an effort to obtain observations for the deep ocean.  Based on 
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experience gained with radar and laser satellite altimeters, the development of a suitable 

follow-on capability is needed to improve observations of ice sheet and glacier 

topography.  Access to InSAR data and ongoing InSAR missions are needed to observe 

flow rates in glaciers and ice sheets.  Finally, the development of an advanced wide-

swath altimeter is needed to observe: 

• sea level associated with the oceanic mesoscale field, coastal variability, and 

marine geoid/bathymetry, 

• surface water levels on land (Alsdorf et al. 2007) and their changes in space and 

time and 

•  surface topography of glaciers and ice sheets. 

 

The Impacts of sea-level rise 

 

Relative sea-level rise has a wide range of effects on coastal systems.  The immediate 

effect is submergence and increased flooding of coastal land, particularly during extreme 

events, as well as saltwater intrusion into surface and ground waters.  In the Bay of 

Bengal, there have been 23 surge events with over 10,000 people killed in each since 

1737 (Murty et al. 1986; Murty and Flather 1994).  The most severe impacts were felt in 

1737 (300,000 people killed), 1864 (100,000 people killed), 1876 (100,000 people 

killed), 1897 (175,000 people killed), 1970 (300,000 people killed) and 1991 (about 

140,000 killed and 10 million made homeless).   
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In Europe the storm surge of 1953 had a major impact with the loss of over 1800 lives in 

the Netherlands and 300 in southeast England (Wolf and Flather 2005).  This event 

resulted in major programmes of coastal protection in both countries.  The most well-

known recent example of coastal flooding is that from Hurricane Katrina in New Orleans 

in August 2005.  This can be considered as a combined impact in which unprecedented 

storm-surge levels were compounded by land subsidence, as occurs naturally in all major 

deltas, together with anthropogenic changes such as oil withdrawal, modification to the 

delta wetlands, restriction of river flow, development on flood plains, sea-level rise and 

the failures of coastal defences.  As of August 2006, estimates are that in excess of 1800 

people lost their lives and there was in excess of $125 billion dollars of damage (for 

example Graumann et al. 2005).  Many of the environmental refugees from Hurricane 

Katrina have not yet returned to New Orleans.   

 

Increases in the frequency of extreme sea levels of a given height have been observed in a 

number of locations around the world, particularly in the Pacific Ocean and along the east 

coast of North America (Woodworth and Blackman 2004).  Most of these increases in the 

frequency of extreme sea levels have occurred as a result of rising mean sea level rather 

than an increase in the intensity of storm surges.  Data from Australia’s east (Sydney) and 

west (Fremantle) coasts indicates that high sea levels of a given value are occurring about 

three times as often in the last half of the 20th century compared with the first half of the 

20th century (Church et al. 2006).  However, to date no study has revealed any significant 

and widespread increase in the intensity of storm surges as would be expected from the 

increased number of intense hurricanes (Webster et al. 2005; Emanuel 2005).   
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Impacts of sea-level rise are determined by the relative sea-level change, reflecting not 

only the global-mean trend in sea level, but also regional and local variations in sea-level 

change and in geological uplift and subsidence.  Areas that are subsiding are more 

threatened.  The most significant impacts may be associated with the combined impact of 

changes in interannual variability and extreme sea levels resulting from storms and the 

global averaged sea-level rise.  Extreme sea-level scenarios due to changing storm 

characteristics need to be considered along with sea-level rise scenarios, although this 

information is presently much less developed for most coastal areas.  As noted above, 

many coastal megacities are built on deltaic regions where significant sinking has 

occurred or is occurring (Nicholls 1995).   

 

Deltaic regions suffer from a combination of existing anthropogenic problems (e.g. 

sediment entrapment by upstream dams, leading to a lack of fluvial accretion) and sea-

level rise. Ericson et al. (2006) estimate that the “effective sea-level rise” (i.e. including 

the effect of subsidence) for 40 deltas worldwide will potentially impact 8,710,000 

people by 2050, assuming a global sea-level rise of 2 mm yr-1 (about 2/3rds of the current 

rate).  This figure includes 3,430,000 people in the Bengal, and 1,910,000 in the Mekong 

delta. These estimates do not take account of increased exposure to storm surges.   

 

Longer-term effects also occur.  These include increased coastal erosion (as mentioned 

above, 70% of the world’s beaches have been eroding over the 20th century and less than 

10% prograding), ecosystem changes, and saltwater intrusion into groundwater.  On 
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sandy coastlines, beach erosion commonly occurs at tens to hundreds of times the rate of 

sea-level rise and will degrade or remove protective coastal features such as sand dunes 

and vegetation, further increasing the risk of coastal flooding.   

 

Outlook for the Future 

 

Projections of 21st century sea-level rise 

 

The Intergovernmental Panel on Climate Change (IPCC) provides the most authoritative 

information on projected sea-level change.  The IPCC Third Assessment Report (TAR) 

of 2001 (Church et al. 2001) projected a global averaged sea-level rise of between 20 and 

70 cm between 1990 and 2100 using the full range of IPCC greenhouse gas scenarios and 

a range of climate models.  When an additional uncertainty for land-ice changes was 

included, the full range of projected sea-level rise was 9 to 88 cm.  For the IPCC’s Fourth 

Assessment Report (AR4; Meehl et al. 2007), the range of sea-level projections, using a 

larger range of models, is 18 to 59 cm (90% confidence limits) over the period from 

1980-1999 to 2090-2099 (Meehl et al. 2007).  The largest contribution is from ocean 

thermal expansion (10-41 cm) with the next largest contribution from glaciers and ice 

caps (7-17 cm).  Recently, Meier et al. (2007) suggested a larger glacier and ice cap 

contribution of 10 to 25 cm for the 21st century.  Meier et al.’s projections are based on 

assuming the present contribution remains steady (with no acceleration) or that the 

present contribution increases, with no allowance for the decreasing area and mass of 

glaciers and ice caps.   
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In the IPCC AR4 projections, the sum of the ice sheet contributions is small, partly as a 

result of increased accumulation on the Antarctic Ice Sheet offsetting positive 

contributions from elsewhere.   

 

However, there is increasing concern about the stability of ice sheets.  For Greenland, this 

concern is based on measurements indicating an increasing contribution from the ice 

sheet (e.g. Rignot and Kanagaratnam 2006), observations of melt water flowing into 

moulins and possibly finding its way to the base of the ice sheet, rapid sliding of glaciers 

at the start of the summer melt season (Zwally et al. 2002) and an increase in the 

frequency of ice quakes (Ekstrom et al. 2006).  Much of the West Antarctic Ice Sheet is 

grounded below sea level and the penetration of warmer water beneath the ice shelves to 

the base of the ice sheet and the subsequent dynamic response is the main reason for 

concern.  This concern has been reinforced by the acceleration of glaciers on the 

Antarctic Peninsula following the collapse of the Larsen B Ice Shelf (Scambos et al. 

2004; Rignot et al. 2004).  The current suite of ice sheet models do not adequately 

represent many of these processes and thus the TAR and AR4 projections of ice sheet 

contributions to both 21st century and longer term sea-level rise may be underestimated.  

Recognizing this deficiency, the IPCC AR4 increased the upper limit of the projected 

sea-level rise by 10 to 20 cm above that projected by the models implying a range of 

projected sea-level rise of 18 cm to 79 cm.  It is unclear what confidence intervals to 

ascribe to this range given the ice sheet uncertainties.  In particular, the IPCC AR4 noted 
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that “larger values cannot be excluded, but understanding of these effects is too limited to 

assess their likelihood or provide a best estimate or an upper bound for sea-level rise.”   

 

While the 2001 and 2007 IPCC projections are somewhat different in how they treat ice 

sheet uncertainties and the confidence limits quoted, a comparison of the projections 

(Figure 6) shows the end results are somewhat similar, except that the lower limit of the 

2001 projections has been raised from 9 cm in the TAR to 18 cm in the AR4.   

 

Despite the additional allowance for ice sheet uncertainties, a number of scientists remain 

concerned that the ice-sheet contributions may have been underestimated.  Rahmstorf 

(2007) developed a simple statistical model that related 20th century surface temperature 

change to 20th century sea-level change.  Using this relationship and projected surface 

temperature increases, he estimated that 21st century sea-level rise might exceed the IPCC 

projections and be as much as 1.4 m.  However, Holgate et al. (2007) emphasised that 

Rahmstorf’s model is simple and may not adequately represent future change.   

 

The concern that the sea-level projections may be biased low has been reinforced by a 

comparison of observed and projected sea-level rise from 1990 to the present.  For this 

period, observed sea level has been rising more rapidly than the central range of the IPCC 

(2001 and 2007) model projections and is at the very upper end of the IPCC TAR 

projections (Figure 6; Rahmstorf et al. 2007), indicating that one or more of the model 

contributions to sea-level rise may be underestimated.  
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Longer-term implications 

 

Irrespective of uncertainties in the particular dynamic responses of either or both ice 

sheets, there is no doubt that there is a surface warming value for the Greenland ice 

sheets above which surface melting exceeds precipitation.  This value is estimated to be 

about 4.5 ± 0.9°C over Greenland, corresponding to a global averaged warming of about 

3.1 ± 0.8°C, both compared to pre-industrial values (Gregory and Huybrechts 2006).  For 

sustained warming above this value, there is likely to be an ongoing wastage of the 

Greenland ice sheet, leading to significant rise in global average sea level of up to several 

metres.  The time scale over which this could occur is disputed.  The processes included 

in the present generation of ice-sheet models lead to time scales of a millennium or two 

(Huybrechts and de Wolde 1999) whereas others (Rignot and Kanagaratnam 2006; 

Hansen 2007) have emphasised these fast dynamic responses of the Greenland and West 

Antarctic Ice Sheets implying a sea-level rise of over a metre from ice sheets alone 

during the 21st century.   

 

Ocean thermal expansion will continue for centuries after greenhouse gas concentration 

are stabilised (Meehl et al. 2005; Wigley 2005) and could eventually be several metres, 

depending on future greenhouse gas concentrations.  Glacier and ice cap wastage will 

also continue.  However, melting of glaciers, particularly those at lower altitude and 

latitude, will eventually result in significant reduction of the sizes of the glaciers and 

reductions in their contribution to the rate of sea-level rise.  The long-term contribution to 

sea level from glaciers and ice caps is limited to less than about 37 cm, the upper limit of 
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current estimates of glacier and ice cap volume.  Note however that there are significant 

implications for local water supply from long term melting of glaciers and ice caps for a 

number of regions, notably those downstream of the Himalayas and the tropical Andes.   

 

Conclusions 

 

Geological data indicate that there was an increase in the rate of sea-level rise in the late 

19th and/or early 20th century and that sea level rose during the 20th century at a much 

faster rate than the last few centuries and millennia (Figure 7).  In situ and satellite data 

indicate an increase in the rate of rise since 1870 and that sea level is currently rising at a 

faster rate than at any time during the last 130 years.  Sea level is projected to continue to 

rise at an increasing rate during the 21st century.  Even if we stabilise atmospheric 

concentrations at today’s (or some other) level, some further increase in sea-level rise 

will still occur (Meehl et al. 2005; Wigley 2005; Wigley 1995).   

 

The 20th and particularly the 21st centuries’ sea levels are significantly higher than that 

experienced over recent centuries (Figure 7) and millennia (Figure 1).  Significant further 

work is required to understand adequately 20th century sea-level rise and thus improve 

projections for the future; a fundamental aspect of that work is the need to sustain and 

enhance a suite of ongoing satellite and in situ observing systems.   

 

For the period 1961 to 2003, the sea-level budget is not closed – sea level was rising at 

1.8 mm yr-1, faster than estimated from knowledge of the contributions at about 1.1 mm 
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yr-1 (Bindoff et al. 2007).  For 1993-2003, Bindoff et al. report that the sum of the 

contributions was approximately equal to the observed rise.  However, it is now known 

that the thermal expansion was over-estimated for this period.  Closing the sea-level 

budget is an area of active research.  Over the last several decades, including the period 

of the IPCC projections since 1990, models indicate a slower rate of sea-level rise than 

observed, thus raising concern about the adequacy of projections for the 21st century.  

This observation and the uncertainty about ice-sheet stability, for example as raised by 

Hansen (2007), further raises concern about the magnitude and the impacts of future sea-

level rise.   

 

There are significant regional variations in the rate of sea-level rise, some of which are 

associated with interannual climate variability.  However, there are also emerging spatial 

patterns which may be part of a long-term trend.  The current generation of climate 

models does not yet provide robust projections of regional patterns of sea-level rise.  As a 

result, the global averaged sea-level rise should be considered for planning purposes, with 

some allowance for a potentially larger contribution as a result of the regional pattern of 

sea-level rise.   

 

The impacts of sea-level rise are being felt now, they will be felt during the 21st century 

and in the longer term and society will need to adapt to the effects of these rising sea 

levels.  These effects include coastal inundation and its consequences, and increased rates 

of coastal erosion.  Impacts will be felt most acutely during extreme events.  Coastal 

flooding events will become more severe and events of a given height will occur more 
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frequently; indeed analysis to date indicates there has already been an increase in 

frequency of these flooding events.  The least developed countries and the poor are most 

at risk.  Environmental refugees already exist as a result of extreme sea-level events and 

there will only be an increase in their numbers as a result of sea-level rise during the 21st 

century and beyond.  Adaptation requires local and regional planning to avoid the 

impacts of the most severe events. 

 

There is a need to urgently reduce emissions of greenhouse gases if we are to avoid the 

most extreme sea-level rise scenarios.  A major question is whether we will pass a critical 

point during the 21st century that will lead to an ongoing and possibly irretrievable 

melting of the Greenland or West Antarctic ice sheet and a sea-level rise of several 

metres.  Our current understanding of ice-sheet dynamics is insufficient to predict 

whether any such large rise would occur in a few centuries or would occur over many 

centuries to millennia.   

 

To address sea-level rise and its impacts requires partnerships between science, 

government, business and community sectors.  These partnerships are required now and 

will need to be strengthened during the 21st century.  Appropriate strategies can lead to a 

significant amelioration of the impacts of sea-level rise through both mitigation of our 

emissions and also plans to adapt to the inevitable consequences of sea-level rise. 
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Figure Captions: 
 
Figure 1.  Estimates of sea-level change over the last 140 thousand years (Lambeck and 
Chappell 2001; Lambeck et al. 2002).  The error bars indicate the limits of estimates from 
available data and the red box in (a) indicates the period covered in (b).   
 
Figure 2.  Sea-level estimates from sedimentary records near New York (Donelly et al. 
2004) and Halifax (Gerhels et al. 2006) compared with the estimates of global mean sea 
level shown in Figure 3.  The sedimentary estimates of sea level have been plotted with 
zero trend for the early part of the record.  The estimated local sea level (compared with 
present day local sea level and corrected for GIA) in ancient Roman times (Lambeck et 
al. 2004), near the start of the tide gauge record at Amsterdam and Liverpool 
(Woodworth 1999) and at the Port Arthur (Tasmania, Australia) benchmark in 1840 
(Hunter et al. 2003) are shown in red, brown, light blue and dark blue respectively.  The 
error bars on these estimates are one standard deviation.   
 
Figure 3.  Global mean sea level from (a) 1870 to 2006 with one standard deviation error 
estimates.  (b)  The linear trends in sea level over 20 year periods, with one sigma error 
on the trend estimates shown by the dotted lines.  (c)  The histogram of trends over the 
period 1870 to 2006.  The mean value and one standard deviation are shown.  The values 
for the last five 20 year periods centred on 1992 or later are shown in red on panels (b) 
and (c).  (T/P + J-1 is the combined TOPEX/POSEIDON and Jason-1 satellite altimeter 
record.)   
 
Figure 4.  The spatial distribution of the rates of sea-level rise, plotted about the mean 
value for the period January 1993 to December 2003, (a) as measured from satellite 
altimeter data, (b) the thermal expansion component for the upper 700 m as estimated 
from a reduced space optimal interpolation using the techniques employed by Domingues 
et al. (submitted).   
 
Figure 5.  Contributions from glaciers and ice caps to global-mean sea level (Dyuregerov 
and Meier, 2005).  The lower panel is the annual contribution and the upper panel is the 
accumulated contribution from 1961.   
 
Figure 6.  Projected sea-level rise for the 21st century.  The projected range of global 
averaged sea-level rise from the IPCC 2001 Assessment Report for the period 1990 to 
2100 is shown by the lines and shading.  (The dark shading is the model average 
envelope for all SRES greenhouse gas scenarios, the light shading is the envelope for all 
models and all SRES Scenarios and the outer lines include an allowance for an additional 
land-ice uncertainty.)  The updated AR4 IPCC projections (90% confidence limits) made 
in 2007 are shown by the bars plotted at 2095, the magenta bar is the range of model 
projections and the red bar is the extended range to allow for the potential but poorly 
quantified additional contribution from a dynamic response of the Greenland and 
Antarctic ice sheets to global warming.  Note that the IPCC AR4 states that “larger values 
cannot be excluded, but understanding of these effects is too limited to assess their 
likelihood or provide a best estimate or an upper bound for sea-level rise.”  The inset 
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shows the 2001 projection compared with the observed rate estimated from tide gauges 
(blue) and satellite altimeters (orange).  (Based on Church et al. 2001, Meehl et al. 2007 
and Rahmstorf et al. 2007.)   
 
Figure 7.  Sea levels from 1500 to 2100.  The blue bar indicates the range of paleo 
observations from Figure 1, 2 and 3, the dotted lines from 1700 to1860 indicate the range 
of sea levels inferred from the Europe’s longest tide-gauge records at Amsterdam and 
Liverpool from Figure 2, the dark line from 1870 to 2006 indicates the global average sea 
level from Figure 3 and the curves from 1990 to 2100 the projections from Figure 6.   
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Figures 
 

 
 
Figure 1.  Estimates of the sea-level change over the last 140 thousand years (Lambeck 
and Chappell 2001; Lambeck et al. 2002).  The error bars indicate the range of estimates 
from available data and the red box in (a) indicates the period covered in (b).   
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Figure 2.  Sea-level estimates from sedimentary records near New York (Donelly et al. 
2004) and Halifax (Gerhels et al. 2006) compared with the estimates of global mean sea 
level shown in Figure 3.  The sedimentary estimates of sea level have been plotted with 
zero trend for the early part of the record.  The estimated local sea level (compared with 
present day local sea level and corrected for GIA) in ancient Roman times (Lambeck et 
al. 2004), near the start of the tide gauge record at Amsterdam and Liverpool 
(Woodworth 1999) and at the Port Arthur (Tasmania, Australia) benchmark in 1840 
(Hunter et al. 2003) are shown in red, brown, light blue and dark blue respectively.  The 
error bars on these estimates are one standard deviation.   
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Figure 3.  Global mean sea level from (a) 1870 to 2006 with one standard deviation error 
estimates.  (b)  The linear trends in sea level over 20 year periods, with one sigma error 
on the trend estimates shown by the dotted lines.  (c)  The histogram of trends over the 
period 1870 to 2006.  The mean value and one standard deviation are shown.  The values 
for the last five 20 year periods centred on 1992 or later are shown in red on panels (b) 
and (c).  (T/P + J-1 is the combined TOPEX/POSEIDON and Jason-1 satellite altimeter 
record.)   
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Figure 4.  The spatial distribution of the rates of sea-level rise, plotted about the mean 
value for the period January 1993 to December 2003, (a) as measured from satellite 
altimeter data, (b) the thermal expansion component for the upper 700 m as estimated 
from a reduced space optimal interpolation using the techniques employed by Domingues 
et al. (submitted).   
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Figure 5.  Contributions from glaciers and ice caps to global-mean sea level (Dyuregerov 
and Meier, 2005).  The lower panel is the annual contribution and the upper panel is the 
accumulated contribution from 1961.   
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Figure 6.  Projected sea-level rise for the 21st century.  The projected range of global 
averaged sea-level rise from the IPCC 2001 Assessment Report for the period 1990 to 
2100 is shown by the lines and shading.  (The dark shading is the model average 
envelope for all SRES greenhouse gas scenarios, the light shading is the envelope for all 
models and all SRES Scenarios and the outer lines include an allowance for an additional 
land-ice uncertainty.)  The updated AR4 IPCC projections (90% confidence limits) made 
in 2007 are shown by the bars plotted at 2095, the magenta bar is the range of model 
projections and the red bar is the extended range to allow for the potential but poorly 
quantified additional contribution from a dynamic response of the Greenland and 
Antarctic ice sheets to global warming.  Note that the IPCC AR4 states that “larger values 
cannot be excluded, but understanding of these effects is too limited to assess their 
likelihood or provide a best estimate or an upper bound for sea-level rise.”  The inset 
shows the 2001 projection compared with the observed rate estimated from tide gauges 
(blue) and satellite altimeters (orange).  (Based on Church et al. 2001, Meehl et al. 2007 
and Rahmstorf et al. 2007.)   
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Figure 7.  Sea levels from 1500 to 2100.  The blue bar indicates the range of paleo 
observations from Figure 1, 2 and 3, the dotted lines from 1700 to1860 indicate the range 
of sea levels inferred from the Europe’s longest tide-gauge records at Amsterdam and 
Liverpool from Figure 2, the dark line from 1870 to 2006 indicates the global average sea 
level from Figure 3 and the curves from 1990 to 2100 the projections from Figure 6.   


