7,722 research outputs found
Controlling competing interactions at oxide interfaces: Enhanced anisotropy in La0.7Sr0.3MnO3 films via interface engineering
We investigated thin La0.7Sr0.3MnO3-SrTiO3 heterostructures, where the band alignment is engineered by a variation of La/Sr stoichiometry only at the interface. In thin films, the engineered interface leads to an enhancement of the reversed spin configuration that mimics bulk behavior. Microscopically, this enhancement is closely connected with an increased magnetic anisotropy as well as intercoupling between an e(g) orbital reconstruction and a corresponding anisotropic lattice fluctuation. Furthermore, a reentrant-type behavior, triggered by this intercoupling, is observed in the remanent spin state. This microscopic perspective leads to insights on developing new strategies for maintaining bulk-like properties even in very thin La0.7Sr0.3MnO3 heterostructures.open11910Ysciescopu
Quantum Yield Calculations for Strongly Absorbing Chromophores
This article demonstrates that a commonly-made assumption in quantum yield
calculations may produce errors of up to 25% in extreme cases and can be
corrected by a simple modification to the analysis.Comment: 3 pages, 2 figures. Accepted by Journal of Fluorescenc
Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin
Spent coffee grounds (SCG) and coffee silverskin (CS) represent a great pollution hazard if discharged into the environment. Taking this fact into account, the purpose of this study was to evaluate the chemical composition, functional properties, and structural characteristics of these agro-industrial residues in order to identify the characteristics that allow their reutilization in industrial processes. According to the results, SCG and CS are both of lignocellulosic nature. Sugars polymerized to their cellulose and hemicellulose fractions correspond to 51.5 and 40.45 % w/w, respectively; however, the hemicellulose sugars and their composition significantly differ from one residue to another. SCG and CS particles differ in terms of morphology and crystallinity, but both materials have very low porosity and similar melting point. In terms of functional properties, SCG and CS present good water and oil holding capacities, emulsion activity and stability, and antioxidant potential, being therefore great candidates for use on food and pharmaceutical fields.The authors acknowledge the financial support of the Science and Technology Foundation of Portugal (FCT) through the grant SFRH/BD/80948/2011 and the Strategic Project PEst-OE/EQB/LA0023/2013. The authors also thank the Project "BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes", REF. NORTE-07-0124-FEDER-000028 co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. Thanks are also given to Prof. Jose J.M. Orfao, from the Department of Chemical Engineering, Universidade do Porto (Portugal), for his assistance with the porosity analyses
Doping a semiconductor to create an unconventional metal
Landau Fermi liquid theory, with its pivotal assertion that electrons in
metals can be simply understood as independent particles with effective masses
replacing the free electron mass, has been astonishingly successful. This is
true despite the Coulomb interactions an electron experiences from the host
crystal lattice, its defects, and the other ~1022/cm3 electrons. An important
extension to the theory accounts for the behaviour of doped semiconductors1,2.
Because little in the vast literature on materials contradicts Fermi liquid
theory and its extensions, exceptions have attracted great attention, and they
include the high temperature superconductors3, silicon-based field effect
transistors which host two-dimensional metals4, and certain rare earth
compounds at the threshold of magnetism5-8. The origin of the non-Fermi liquid
behaviour in all of these systems remains controversial. Here we report that an
entirely different and exceedingly simple class of materials - doped small gap
semiconductors near a metal-insulator transition - can also display a non-Fermi
liquid state. Remarkably, a modest magnetic field functions as a switch which
restores the ordinary disordered Fermi liquid. Our data suggest that we have
finally found a physical realization of the only mathematically rigourous route
to a non-Fermi liquid, namely the 'undercompensated Kondo effect', where there
are too few mobile electrons to compensate for the spins of unpaired electrons
localized on impurity atoms9-12.Comment: 17 pages 4 figures supplemental information included with 2 figure
Hazard Analysis of Critical Control Points Assessment as a Tool to Respond to Emerging Infectious Disease Outbreaks
Highly pathogenic avian influenza virus (HPAI) strain H5N1 has had direct and indirect economic impacts arising from direct mortality and control programmes in over 50 countries reporting poultry outbreaks. HPAI H5N1 is now reported as the most widespread and expensive zoonotic disease recorded and continues to pose a global health threat. The aim of this research was to assess the potential of utilising Hazard Analysis of Critical Control Points (HACCP) assessments in providing a framework for a rapid response to emerging infectious disease outbreaks. This novel approach applies a scientific process, widely used in food production systems, to assess risks related to a specific emerging health threat within a known zoonotic disease hotspot. We conducted a HACCP assessment for HPAI viruses within Vietnam’s domestic poultry trade and relate our findings to the existing literature. Our HACCP assessment identified poultry flock isolation, transportation, slaughter, preparation and consumption as critical control points for Vietnam’s domestic poultry trade. Introduction of the preventative measures highlighted through this HACCP evaluation would reduce the risks posed by HPAI viruses and pressure on the national economy. We conclude that this HACCP assessment provides compelling evidence for the future potential that HACCP analyses could play in initiating a rapid response to emerging infectious diseases
Satellites and large doping- and temperature-dependence of electronic properties in hole-doped BaFe2As2
Over the last years, superconductivity has been discovered in several
families of iron-based compounds. Despite intense research, even basic
electronic properties of these materials, such as Fermi surfaces, effective
electron masses, or orbital characters are still subject to debate. Here, we
address an issue that has not been considered before, namely the consequences
of dynamical screening of the Coulomb interactions among Fe-d electrons. We
demonstrate its importance not only for correlation satellites seen in
photoemission spectroscopy, but also for the low-energy electronic structure.
From our analysis of the normal phase of BaFe2As2 emerges the picture of a
strongly correlated compound with strongly doping- and temperature-dependent
properties. In the hole overdoped regime, an incoherent metal is found, while
Fermi-liquid behavior is recovered in the undoped compound. At optimal doping,
the self-energy exhibits an unusual square-root energy dependence which leads
to strong band renormalizations near the Fermi level
Sampling-based Algorithms for Optimal Motion Planning
During the last decade, sampling-based path planning algorithms, such as
Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have
been shown to work well in practice and possess theoretical guarantees such as
probabilistic completeness. However, little effort has been devoted to the
formal analysis of the quality of the solution returned by such algorithms,
e.g., as a function of the number of samples. The purpose of this paper is to
fill this gap, by rigorously analyzing the asymptotic behavior of the cost of
the solution returned by stochastic sampling-based algorithms as the number of
samples increases. A number of negative results are provided, characterizing
existing algorithms, e.g., showing that, under mild technical conditions, the
cost of the solution returned by broadly used sampling-based algorithms
converges almost surely to a non-optimal value. The main contribution of the
paper is the introduction of new algorithms, namely, PRM* and RRT*, which are
provably asymptotically optimal, i.e., such that the cost of the returned
solution converges almost surely to the optimum. Moreover, it is shown that the
computational complexity of the new algorithms is within a constant factor of
that of their probabilistically complete (but not asymptotically optimal)
counterparts. The analysis in this paper hinges on novel connections between
stochastic sampling-based path planning algorithms and the theory of random
geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics
Researc
Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells
Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator
Impact of Vitamin D Supplementation on Arterial Vasomotion, Stiffness and Endothelial Biomarkers in Chronic Kidney Disease Patients
Background: Cardiovascular events are frequent and vascular endothelial function is abnormal in patients with chronic
kidney disease (CKD). We demonstrated endothelial dysfunction with vitamin D deficiency in CKD patients; however the impact of cholecalciferol supplementation on vascular stiffness and vasomotor function, endothelial and bone biomarkers in CKD patients with low 25-hydroxy vitamin D [25(OH)D] is unknown, which this study investigated.
Methods: We assessed non-diabetic patients with CKD stage 3/4, age 17–80 years and serum 25(OH)D ,75 nmol/L. Brachial
artery Flow Mediated Dilation (FMD), Pulse Wave Velocity (PWV), Augmentation Index (AI) and circulating blood biomarkers were evaluated at baseline and at 16 weeks. Oral 300,000 units cholecalciferol was administered at baseline and 8-weeks.
Results: Clinical characteristics of 26 patients were: age 50614 (mean61SD) years, eGFR 41611 ml/min/1.73 m2, males
73%, dyslipidaemia 36%, smokers 23% and hypertensives 87%. At 16-week serum 25(OH)D and calcium increased (43616
to 84629 nmol/L, p,0.001 and 2.3760.09 to 2.4260.09 mmol/L; p = 0.004, respectively) and parathyroid hormone
decreased (10.868.6 to 7.464.4; p = 0.001). FMD improved from 3.163.3% to 6.163.7%, p = 0.001. Endothelial biomarker
concentrations decreased: E-Selectin from 566662123 to 525662058 pg/mL; p = 0.032, ICAM-1, 3.4560.01 to
3.1061.04 ng/mL; p = 0.038 and VCAM-1, 54633 to 42633 ng/mL; p = 0.006. eGFR, BP, PWV, AI, hsCRP, von Willebrand
factor and Fibroblast Growth Factor-23, remained unchanged.
Conclusion: This study demonstrates for the first time improvement of endothelial vasomotor and secretory functions with vitamin D in CKD patients without significant adverse effects on arterial stiffness, serum calcium or FGF-23.
Trial Registration: ClinicalTrials.gov NCT0200571
Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae
Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity
- …
