7 research outputs found

    Spatial Scales of Bacterial Diversity in Cold-Water Coral Reef Ecosystems

    Get PDF
    Background: Cold-water coral reef ecosystems are recognized as biodiversity hotspots in the deep sea, but insights into their associated bacterial communities are still limited. Deciphering principle patterns of bacterial community variation over multiple spatial scales may however prove critical for a better understanding of factors contributing to cold-water coral reef stability and functioning. Methodology/Principal Findings: Bacterial community structure, as determined by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was investigated with respect to (i) microbial habitat type and (ii) coral species and color, as well as the three spatial components (iii) geomorphologic reef zoning, (iv) reef boundary, and (v) reef location. Communities revealed fundamental differences between coral-generated (branch surface, mucus) and ambient microbial habitats (seawater, sediments). This habitat specificity appeared pivotal for determining bacterial community shifts over all other study levels investigated. Coral-derived surfaces showed species-specific patterns, differing significantly between Lophelia pertusa and Madrepora oculata, but not between L. pertusa color types. Within the reef center, no community distinction corresponded to geomorphologic reef zoning for both coral-generated and ambient microbial habitats. Beyond the reef center, however, bacterial communities varied considerably from local to regional scales, with marked shifts toward the reef periphery as well as between different in- and offshore reef sites, suggesting significant biogeographic imprinting but wea

    Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus

    No full text
    Scleractinian corals may acquire Symbiodinium from their parents (vertically) or from the environment (horizontally). In the present study, adult colonies of the coral Acropora longicyathus from One Tree Island (OTI) on the southern Great Barrier Reef (Australia) acquired two distinct varieties of symbiotic dinoflagellates (Symbiodinium) from the environment. Adult colonies had either Symbiodinium from clade C (86.7%) or clade A (5.3%), or a mixture of both clades A and C (8.0% of all colonies). In contrast, all 10-day-old juveniles were associated with Symbiodinium from clade A, while 83-day-old colonies contained clades A, C and D even though they were growing at the same location. Symbiodinium from clade A were dominant in both 10- and 83-day-old juveniles (99 and 97% of all recruits, respectively), while clade D was also found in 31% of 83-day-old juveniles. Experimental manipulation also revealed that parental association (with clade A or C), or the location within the OTI reef, did not influence which clade of symbiont was acquired by juvenile corals. The differences between the genetic identity of populations of Symbiodinium resident in juveniles and adult A. longicyathus suggest that ontogenetic changes in the symbiosis may occur during the development of scleractinian corals. Whether or not these changes are due to host selective processes or differences in the physical environment associated with juvenile versus adult colonies remains to be determined
    corecore