148 research outputs found

    Rudra Interrupts Receptor Signaling Complexes to Negatively Regulate the IMD Pathway

    Get PDF
    Insects rely primarily on innate immune responses to fight pathogens. In Drosophila, antimicrobial peptides are key contributors to host defense. Antimicrobial peptide gene expression is regulated by the IMD and Toll pathways. Bacterial peptidoglycans trigger these pathways, through recognition by peptidoglycan recognition proteins (PGRPs). DAP-type peptidoglycan triggers the IMD pathway via PGRP-LC and PGRP-LE, while lysine-type peptidoglycan is an agonist for the Toll pathway through PGRP-SA and PGRP-SD. Recent work has shown that the intensity and duration of the immune responses initiating with these receptors is tightly regulated at multiple levels, by a series of negative regulators. Through two-hybrid screening with PGRP-LC, we identified Rudra, a new regulator of the IMD pathway, and demonstrate that it is a critical feedback inhibitor of peptidoglycan receptor signaling. Following stimulation of the IMD pathway, rudra expression was rapidly induced. In cells, RNAi targeting of rudra caused a marked up-regulation of antimicrobial peptide gene expression. rudra mutant flies also hyper-activated antimicrobial peptide genes and were more resistant to infection with the insect pathogen Erwinia carotovora carotovora. Molecularly, Rudra was found to bind and interfere with both PGRP-LC and PGRP-LE, disrupting their signaling complex. These results show that Rudra is a critical component in a negative feedback loop, whereby immune-induced gene expression rapidly produces a potent inhibitor that binds and inhibits pattern recognition receptors

    Overexpression of CDC25B, CDC25C and phospho-CDC25C (Ser216) in vulvar squamous cell carcinomas are associated with malignant features and aggressive cancer phenotypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CDC25 phosphatases are important regulators of the cell cycle. Their abnormal expression detected in a number of tumors implies that their dysregulation is involved in malignant transformation. However, the role of CDC25s in vulvar cancer is still unknown. To shed light on their roles in the pathogenesis and to clarify their prognostic values, expression of CDC25A, CDC25B and CDC25C in a large series of vulvar squamous cell carcinomas were examined.</p> <p>Methods</p> <p>Expression of CDC25A, CDC25B, CDC25C and phosphorylated (phospho)-CDC25C (Ser216) were examined in 300 vulvar carcinomas using immunohistochemistry. Western blot analysis was utilized to demonstrate CDC25s expression in vulvar cancer cell lines. Kinase and phosphatase assays were performed to exclude cross reactivity among CDC25s isoform antibodies.</p> <p>Results</p> <p>High nuclear CDC25A and CDC25B expression were observed in 51% and 16% of the vulvar carcinomas, respectively, whereas high cytoplasmic CDC25C expression was seen in 63% of the cases. In cytoplasm, nucleus and cytoplasm/nucleus high phospho-CDC25C (Ser216) expression was identified in 50%, 70% and 77% of the carcinomas, respectively. High expression of CDC25s correlated significantly with malignant features, including poor differentiation and infiltration of vessel for CDC25B, high FIGO stage, presence of lymph node metastases, large tumor diameter, poor differentiation for CDC25C and high FIGO stage, large tumor diameter, deep invasion and poor differentiation for phospho-CDC25C (Ser216). In univariate analysis, high expression of phospho-CDC25C (Ser216) was correlated with poor disease-specific survival (p = 0.04). However, such an association was annulled in multivariate analysis.</p> <p>Conclusions</p> <p>Our results suggest that CDC25C and phospho-CDC25C (Ser216) play a crucial role and CDC25B a minor role in the pathogenesis and/or progression of vulvar carcinomas. CDC25B, CDC25C and phospho-CDC25C (Ser216) were associated with malignant features and aggressive cancer phenotypes. However, the CDC25s isoforms were not independently correlated to prognosis.</p

    Glutathione Precursor N-Acetyl-Cysteine Modulates EEG Synchronization in Schizophrenia Patients: A Double-Blind, Randomized, Placebo-Controlled Trial

    Get PDF
    Glutathione (GSH) dysregulation at the gene, protein, and functional levels has been observed in schizophrenia patients. Together with disease-like anomalies in GSH deficit experimental models, it suggests that such redox dysregulation can play a critical role in altering neural connectivity and synchronization, and thus possibly causing schizophrenia symptoms. To determine whether increased GSH levels would modulate EEG synchronization, N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients in a randomized, double-blind, crossover protocol for 60 days, followed by placebo for another 60 days (or vice versa). We analyzed whole-head topography of the multivariate phase synchronization (MPS) for 128-channel resting-state EEGs that were recorded at the onset, at the point of crossover, and at the end of the protocol. In this proof of concept study, the treatment with NAC significantly increased MPS compared to placebo over the left parieto-temporal, the right temporal, and the bilateral prefrontal regions. These changes were robust both at the group and at the individual level. Although MPS increase was observed in the absence of clinical improvement at a group level, it correlated with individual change estimated by Liddle's disorganization scale. Therefore, significant changes in EEG synchronization induced by NAC administration may precede clinically detectable improvement, highlighting its possible utility as a biomarker of treatment efficacy

    Identifying Genetic Dependencies in Cancer by Analyzing siRNA Screens in Tumor Cell Line Panels.

    Get PDF
    Loss-of-function screening using RNA interference or CRISPR approaches can be used to identify genes that specific tumor cell lines depend upon for survival. By integrating the results from screens in multiple cell lines with molecular profiling data, it is possible to associate the dependence upon specific genes with particular molecular features (e.g., the mutation of a cancer driver gene, or transcriptional or proteomic signature). Here, using a panel of kinome-wide siRNA screens in osteosarcoma cell lines as an example, we describe a computational protocol for analyzing loss-of-function screens to identify genetic dependencies associated with particular molecular features. We describe the steps required to process the siRNA screen data, integrate the results with genotypic information to identify genetic dependencies, and finally the integration of protein-protein interaction data to interpret these dependencies

    Auditory temporal processing in healthy aging: a magnetoencephalographic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years.</p> <p>Results</p> <p>The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants.</p> <p>Conclusion</p> <p>The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms.</p

    The JAK-STAT Pathway Controls Plasmodium vivax Load in Early Stages of Anopheles aquasalis Infection

    Get PDF
    Malaria affects 300 million people worldwide every year and 450,000 in Brazil. In coastal areas of Brazil, the main malaria vector is Anopheles aquasalis, and Plasmodium vivax is responsible for the majority of malaria cases in the Americas. Insects possess a powerful immune system to combat infections. Three pathways control the insect immune response: Toll, IMD, and JAK-STAT. Here we analyze the immune role of the A. aquasalis JAK-STAT pathway after P. vivax infection. Three genes, the transcription factor Signal Transducers and Activators of Transcription (STAT), the regulatory Protein Inhibitors of Activated STAT (PIAS) and the Nitric Oxide Synthase enzyme (NOS) were characterized. Expression of STAT and PIAS was higher in males than females and in eggs and first instar larvae when compared to larvae and pupae. RNA levels for STAT and PIAS increased 24 and 36 hours (h) after P. vivax challenge. NOS transcription increased 36 h post infection (hpi) while this protein was already detected in some midgut epithelial cells 24 hpi. Imunocytochemistry experiments using specific antibodies showed that in non-infected insects STAT and PIAS were found mostly in the fat body, while in infected mosquitoes the proteins were found in other body tissues. The knockdown of STAT by RNAi increased the number of oocysts in the midgut of A. aquasalis. This is the first clear evidence for the involvement of a specific immune pathway in the interaction of the Brazilian malaria vector A. aquasalis with P. vivax, delineating a potential target for the future development of disease controlling strategies
    corecore