1,173 research outputs found

    New Measurements of Venus Winds with Ground-Based Doppler Velocimetry at CFHT

    Get PDF
    operations with observations from the ground using various techniques and spectral domains (Lellouch and Witasse, 2008). We present an analysis of Venus Doppler winds at cloud tops based on observations made at the Canada France Hawaii 3.6-m telescope (CFHT) with the ESPaDOnS visible spectrograph. These observations consisted of high-resolution spectra of Fraunhofer lines in the visible range (0.37-1.05 μm) to measure the winds at cloud tops using the Doppler shift of solar radiation scattered by cloud top particles in the observer's direction (Widemann et al., 2007, 2008). The observations were made during 19-20 February 2011 and were coordinated with Visual Monitoring Camera (VMC) observations by Venus Express. The complete optical spectrum was collected over 40 spectral orders at each point with 2-5 seconds exposures, at a resolution of about 80000. The observations included various points of the dayside hemisphere at a phase angle of 67°, between +10° and -60° latitude, in steps of 10° , and from +70° to -12° longitude relative to sub-Earth meridian in steps of 12°. The Doppler shift measured in scattered solar light on Venus dayside results from two instantaneous motions: (1) a motion between the Sun and Venus upper cloud particles; (2) a motion between the observer and Venus clouds. The measured Doppler shift, which results from these two terms combined, varies with the planetocentric longitude and latitude and is minimum at meridian ΦN = ΦSun - ΦEarth where the two components subtract to each other for a pure zonal regime. Due to the need for maintaining a stable velocity reference during the course of acquisition using high resolution spectroscopy, we measure relative Doppler shifts to ΦN. The main purpose of our work is to provide variable wind measurements with respect to the background atmosphere, complementary to simultaneous measurements made with the VMC camera onboard the Venus Express. We will present first results from this work, comparing with previous results by the CFHT/ESPaDOnS and VLT-UVES spectrographs (Machado et al., 2012), with Galileo fly-by measurements and with VEx nominal mission observations (Peralta et al., 2007, Luz et al., 2011). Acknowledgements: The authors acknowledge support from FCT through projects PTDC/CTE-AST/110702/2009 and PEst-OE/FIS/UI2751/2011. PM and TW also acknowledge support from the Observatoire de Paris. Lellouch, E., and Witasse, O., A coordinated campaign of Venus ground-based observations and Venus Express measurements, Planetary and Space Science 56 (2008) 1317-1319. Luz, D., et al., Venus's polar vortex reveals precessing circulation, Science 332 (2011) 577-580. Machado, P., Luz, D. Widemann, T., Lellouch, E., Witasse, O, Characterizing the atmospheric dynamics of Venus from ground-based Doppler velocimetry, Icarus, submitted. Peralta J., R. Hueso, A. Sánchez-Lavega, A reanalysis of Venus winds at two cloud levels from Galileo SSI images, Icarus 190 (2007) 469-477. Widemann, T., Lellouch, E., Donati, J.-F., 2008, Venus Doppler winds at Cloud Tops Observed with ESPaDOnS at CFHT, Planetary and Space Science, 56, 1320-1334

    Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery

    Get PDF
    Semantic tool segmentation in surgical videos is important for surgical scene understanding and computer-assisted interventions as well as for the development of robotic automation. The problem is challenging because different illumination conditions, bleeding, smoke and occlusions can reduce algorithm robustness. At present labelled data for training deep learning models is still lacking for semantic surgical instrument segmentation and in this paper we show that it may be possible to use robot kinematic data coupled with laparoscopic images to alleviate the labelling problem. We propose a new deep learning based model for parallel processing of both laparoscopic and simulation images for robust segmentation of surgical tools. Due to the lack of laparoscopic frames annotated with both segmentation ground truth and kinematic information a new custom dataset was generated using the da Vinci Research Kit (dVRK) and is made available

    The effectiveness and satisfaction of web-based physiotherapy in people with spinal cord injury: a pilot randomised controlled trial

    Get PDF
    Study Design: Pilot randomised controlled trial. Objectives: The aims of this study were to evaluate the effectiveness and participant satisfaction of web-based physiotherapy for people with Spinal Cord Injury (SCI). Setting: Community patients of a national spinal injury unit in a university teaching hospital, Scotland, UK. Methods: Twenty-four participants were recruited and randomised to receive eight weeks of web-based physiotherapy (intervention), twice per week, or usual care (control). Individual exercise programmes were prescribed based upon participant’s abilities. The intervention was delivered via a website (www.webbasedphysio.com) and monitored and progressed remotely by the physiotherapist. Results: Participants logged on to the website an average of 1.4±0.8 times per week. Between-group differences, although not significant were more pronounced for the 6 minute walk test. Participants were positive about using web-based physiotherapy and stated they would be happy to use it again and would recommend it to others. Overall it was rated as either good or excellent. Conclusions: Web-based physiotherapy was feasible and acceptable for people with SCI. Participants achieved good compliance with the intervention, rated the programme highly and beneficial for health and well-being at various states post injury. The results of this study warrant further work with a more homogenous sample

    Maintaining real-time precise point positioning during outages of orbit and clock corrections

    Get PDF
    The precise point positioning (PPP) is a popular positioning technique that is dependent on the use of precise orbits and clock corrections. One serious problem for real-time PPP applications such as natural hazard early warning systems and hydrographic surveying is when a sudden communication break takes place resulting in a discontinuity in receiving these orbit and clock corrections for a period that may extend from a few minutes to hours. A method is presented to maintain real-time PPP with 3D accuracy less than a decimeter when such a break takes place. We focus on the open-access International GNSS Service (IGS) real-time service (RTS) products and propose predicting the precise orbit and clock corrections as time series. For a short corrections outage of a few minutes, we predict the IGS-RTS orbits using a high-order polynomial, and for longer outages up to 3 h, the most recent IGS ultra-rapid orbits are used. The IGS-RTS clock corrections are predicted using a second-order polynomial and sinusoidal terms. The model parameters are estimated sequentially using a sliding time window such that they are available when needed. The prediction model of the clock correction is built based on the analysis of their properties, including their temporal behavior and stability. Evaluation of the proposed method in static and kinematic testing shows that positioning precision of less than 10 cm can be maintained for up to 2 h after the break. When PPP re-initialization is needed during the break, the solution convergence time increases; however, positioning precision remains less than a decimeter after convergence

    Assay strategies for the discovery and validation of therapeutics targeting <i>Brugia pahangi</i> Hsp90

    Get PDF
    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target

    Binary and Millisecond Pulsars at the New Millennium

    Get PDF
    We review the properties and applications of binary and millisecond pulsars. Our knowledge of these exciting objects has greatly increased in recent years, mainly due to successful surveys which have brought the known pulsar population to over 1300. There are now 56 binary and millisecond pulsars in the Galactic disk and a further 47 in globular clusters. This review is concerned primarily with the results and spin-offs from these surveys which are of particular interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living Reviews in Relativity (http://www.livingreviews.org

    Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility

    Get PDF
    Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5–10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility

    Design and feasibility testing of a novel group intervention for young women who binge drink in groups

    Get PDF
    BackgroundYoung women frequently drink alcohol in groups and binge drinking within these natural drinking groups is common. This study describes the design of a theoretically and empirically based group intervention to reduce binge drinking among young women. It also evaluates their engagement with the intervention and the acceptability of the study methods.MethodsFriendship groups of women aged 18–35 years, who had two or more episodes of binge drinking (>6 UK units on one occasion; 48g of alcohol) in the previous 30 days, were recruited from the community. A face-to-face group intervention, based on the Health Action Process Approach, was delivered over three sessions. Components of the intervention were woven around fun activities, such as making alcohol free cocktails. Women were followed up four months after the intervention was delivered. Results The target of 24 groups (comprising 97 women) was recruited. The common pattern of drinking was infrequent, heavy drinking (mean consumption on the heaviest drinking day was UK 18.1 units). Process evaluation revealed that the intervention was delivered with high fidelity and acceptability of the study methods was high. The women engaged positively with intervention components and made group decisions about cutting down. Twenty two groups set goals to reduce their drinking, and these were translated into action plans. Retention of individuals at follow up was 87%.ConclusionsThis study successfully recruited groups of young women whose patterns of drinking place them at high risk of acute harm. This novel approach to delivering an alcohol intervention has potential to reduce binge drinking among young women. The high levels of engagement with key steps in the behavior change process suggests that the group intervention should be tested in a full randomised controlled trial
    corecore