774 research outputs found
Discrete wavelet transform de-noising in eukaryotic gene splicing
<p>Abstract</p> <p>Background</p> <p>This paper compares the most common digital signal processing methods of exon prediction in eukaryotes, and also proposes a technique for noise suppression in exon prediction. The specimen used here which has relevance in medical research, has been taken from the public genomic database - GenBank.</p> <p>Methods</p> <p>Here exon prediction has been done using the digital signal processing methods viz. binary method, EIIP (electron-ion interaction psuedopotential) method and filter methods. Under filter method two filter designs, and two approaches using these two designs have been tried. The discrete wavelet transform has been used for de-noising of the exon plots.</p> <p>Results</p> <p>Results of exon prediction based on the methods mentioned above, which give values closest to the ones found in the NCBI database are given here. The exon plot de-noised using discrete wavelet transform is also given.</p> <p>Conclusion</p> <p>Alterations to the proven methods as done by the authors, improves performance of exon prediction algorithms. Also it has been proven that the discrete wavelet transform is an effective tool for de-noising which can be used with exon prediction algorithms.</p
Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam
Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing to increase the number of transistors in a processor, as known as Moore’s law, for example. However, uniform electron transport has never been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes with potentially introducing additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices
Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development
, AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes.Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a previously unknown transcriptional repressor family, and revealed their possible roles in plant growth and development
Working Group Report: Heavy-Ion Physics and Quark-Gluon Plasma
This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09
which was part of Working Group-4. Discussion and work on some aspects of
Quark-Gluon Plasma believed to have created in heavy-ion collisions and in
early universe are reported.Comment: 20 pages, 6 eps figures, Heavy-ion physics and QGP activity report in
"IX Workshop on High Energy Physics Phenomenology (WHEPP-09)" held in
Institute of Physics, Bhubaneswar, India, during January 3-14, 2006. To be
published in PRAMANA - Journal of Physics (Indian Academy of Science
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
Measurement of the Dipion Mass Spectrum in X(3872) -> J/Psi Pi+ Pi- Decays
We measure the dipion mass spectrum in X(3872)--> J/Psi Pi+ Pi- decays using
360 pb-1 of pbar-p collisions at 1.96 TeV collected with the CDF II detector.
The spectrum is fit with predictions for odd C-parity (3S1, 1P1, and 3DJ)
charmonia decaying to J/Psi Pi+ Pi-, as well as even C-parity states in which
the pions are from Rho0 decay. The latter case also encompasses exotic
interpretations, such as a D0-D*0Bar molecule. Only the 3S1 and J/Psi Rho
hypotheses are compatible with our data. Since 3S1 is untenable on other
grounds, decay via J/Psi Rho is favored, which implies C=+1 for the X(3872).
Models for different J/Psi-Rho angular momenta L are considered. Flexibility in
the models, especially the introduction of Rho-Omega interference, enable good
descriptions of our data for both L=0 and 1.Comment: 7 pages, 4 figures -- Submitted to Phys. Rev. Let
Search for Higgs Boson Decaying to b-bbar and Produced in Association with W Bosons in p-pbar Collisions at sqrt{s}=1.96 TeV
We present a search for Higgs bosons decaying into b-bbar and produced in
association with W bosons in p-pbar collisions at sqrt{s}=1.96 TeV. This search
uses 320 pb-1 of the dataset accumulated by the upgraded Collider Detector at
Fermilab. Events are selected that have a high-transverse momentum electron or
muon, missing transverse energy, and two jets, one of which is consistent with
a hadronization of a b quark. Both the number of events and the dijet mass
distribution are consistent with standard model background expectations, and we
set 95% confidence level upper limits on the production cross section times
branching ratio for the Higgs boson or any new particle with similar decay
kinematics. These upper limits range from 10 pb for mH=110 GeV/c2 to 3 pb for
mH=150 GeV/c2.Comment: 7 pages, 3 figures; updated title to published versio
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Search for anomalous semileptonic decay of heavy flavor hadrons produced in association with a W boson at CDF II
We present a search for anomalous semileptonic decays of heavy flavor hadrons
produced in association with a boson, in proton-antiproton collisions at
sqrt{s}=1.96 TeV. We use 162 pb-1 of data collected with the CDF II detector at
the Fermilab Tevatron Collider. We select events with one W boson and at least
one jet with an identified secondary vertex. In the jets with a secondary
vertex we look for a semileptonic decay to a muon. We compare the number of
jets with both a secondary vertex and a semileptonic decay, and the kinematic
properties of these jets, with the standard model expectation of W plus heavy
flavor production and decay. No discrepancy is seen between the observation and
the expectation, and we set limits on the production cross section of a B-like
hadron with an anomalously high semileptonic branching ratio.Comment: 8 pages, 2 figures, submitted to PRD-RC; replaced to adjust the page
forma
Measurement of the Ratios of Branching Fractions B(Bs->Ds- pi+)/B(B0->D-pi+) and B(B+->D0bar pi+)/B(B0->D-pi+)
We report an observation of the decay Bs -> Ds- pi+ in p pbar collisions at
sqrt(s) = 1.96 TeV using 115 pb^(-1) of data collected by the CDF II detector
at the Fermilab Tevatron. We observe 83 +/- 11 Bs -> Ds- pi+ candidates,
representing a large increase in statistics over previous measurements and the
first observation of this decay at a p pbar collider. We present the first
measurement of the relative branching fraction B(Bs -> Ds- pi+) / B(B0 -> D-
pi+) = 1.32 +/- 0.18 (stat.) +/- 0.38 (syst.). We also measure B(B+ -> D0bar
pi+) / B(B0 -> D- pi+) = 1.97 +/- 0.10(stat.) +/- 0.21(syst.), which is
consistent with previous measurements
- …