56 research outputs found
Rising Population Cost for Treating People Living with HIV in the UK, 1997-2013
Background
The number of people living with HIV (PLHIV) is increasing in the UK. This study estimated the annual population cost of providing HIV services in the UK, 1997–2006 and projected them 2007–2013.
Methods
Annual cost of HIV treatment for PLHIV by stage of HIV infection and type of ART was calculated (UK pounds, 2006 prices). Population costs were derived by multiplying the number of PLHIV by their annual cost for 1997–2006 and projected 2007–2013.
Results
Average annual treatment costs across all stages of HIV infection ranged from £17,034 in 1997 to £18,087 in 2006 for PLHIV on mono-therapy and from £27,649 in 1997 to £32,322 in 2006 for those on quadruple-or-more ART. The number of PLHIV using NHS services rose from 16,075 to 52,083 in 2006 and was projected to increase to 78,370 by 2013. Annual population cost rose from £104 million in 1997 to £483 million in 2006, with a projected annual cost between £721 and £758 million by 2013. When including community care costs, costs increased from £164 million in 1997, to £683 million in 2006 and between £1,019 and £1,065 million in 2013.
Conclusions
Increased number of PLHIV using NHS services resulted in rising UK population costs. Population costs are expected to continue to increase, partly due to PLHIV's longer survival on ART and the relative lack of success of HIV preventing programs. Where possible, the cost of HIV treatment and care needs to be reduced without reducing the quality of services, and prevention programs need to become more effective. While high income countries are struggling to meet these increasing costs, middle- and lower-income countries with larger epidemics are likely to find it even more difficult to meet these increasing demands, given that they have fewer resources
Autonomous Targeting of Infectious Superspreaders Using Engineered Transmissible Therapies
Infectious disease treatments, both pharmaceutical and vaccine, face three universal challenges: the difficulty of targeting treatments to high-risk ‘superspreader’ populations who drive the great majority of disease spread, behavioral barriers in the host population (such as poor compliance and risk disinhibition), and the evolution of pathogen resistance. Here, we describe a proposed intervention that would overcome these challenges by capitalizing upon Therapeutic Interfering Particles (TIPs) that are engineered to replicate conditionally in the presence of the pathogen and spread between individuals — analogous to ‘transmissible immunization’ that occurs with live-attenuated vaccines (but without the potential for reversion to virulence). Building on analyses of HIV field data from sub-Saharan Africa, we construct a multi-scale model, beginning at the single-cell level, to predict the effect of TIPs on individual patient viral loads and ultimately population-level disease prevalence. Our results show that a TIP, engineered with properties based on a recent HIV gene-therapy trial, could stably lower HIV/AIDS prevalence by ∼30-fold within 50 years and could complement current therapies. In contrast, optimistic antiretroviral therapy or vaccination campaigns alone could only lower HIV/AIDS prevalence by <2-fold over 50 years. The TIP's efficacy arises from its exploitation of the same risk factors as the pathogen, allowing it to autonomously penetrate superspreader populations, maintain efficacy despite behavioral disinhibition, and limit viral resistance. While demonstrated here for HIV, the TIP concept could apply broadly to many viral infectious diseases and would represent a new paradigm for disease control, away from pathogen eradication but toward robust disease suppression
Understanding the Impact of Male Circumcision Interventions on the Spread of HIV in Southern Africa
BACKGROUND: Three randomised controlled trials have clearly shown that circumcision of adult men reduces the chance that they acquire HIV infection. However, the potential impact of circumcision programmes--either alone or in combination with other established approaches--is not known and no further field trials are planned. We have used a mathematical model, parameterised using existing trial findings, to understand and predict the impact of circumcision programmes at the population level. FINDINGS: Our results indicate that circumcision will lead to reductions in incidence for women and uncircumcised men, as well as those circumcised, but that even the most effective intervention is unlikely to completely stem the spread of the virus. Without additional interventions, HIV incidence could eventually be reduced by 25-35%, depending on the level of coverage achieved and whether onward transmission from circumcised men is also reduced. However, circumcision interventions can act synergistically with other types of prevention programmes, and if efforts to change behaviour are increased in parallel with the scale-up of circumcision services, then dramatic reductions in HIV incidence could be achieved. In the long-term, this could lead to reduced AIDS deaths and less need for anti-retroviral therapy. Any increases in risk behaviours following circumcision, i.e. 'risk compensation', could offset some of the potential benefit of the intervention, especially for women, but only very large increases would lead to more infections overall. CONCLUSIONS: Circumcision will not be the silver bullet to prevent HIV transmission, but interventions could help to substantially protect men and women from infection, especially in combination with other approaches
Expanding ART for Treatment and Prevention of HIV in South Africa: Estimated Cost and Cost-Effectiveness 2011-2050
Background: Antiretroviral Treatment (ART) significantly reduces HIV transmission. We conducted a cost-effectiveness analysis of the impact of expanded ART in South Africa. Methods: We model a best case scenario of 90% annual HIV testing coverage in adults 15-49 years old and four ART eligibility scenarios: CD4 count <200 cells/mm3(current practice), CD4 count <350, CD4 count <500, all CD4 levels. 2011-2050 outcomes include deaths, disability adjusted life years (DALYs), HIV infections, cost, and cost per DALY averted. Service and ART costs reflect South African data and international generic prices. ART reduces transmission by 92%. We conducted sensitivity analyses. Results: Expanding ART to CD4 count <350 cells/mm3prevents an estimated 265,000 (17%) and 1.3 million (15%) new HIV infections over 5 and 40 years, respectively. Cumulative deaths decline 15%, from 12.5 to 10.6 million; DALYs by 14% from 109 to 93 million over 40 years. Costs drop 3.9 billion over 40 years with breakeven by 2013. Compared with the current scenario, expanding to <500 prevents an additional 585,000 and 3 million new HIV infections over 5 and 40 years, respectively. Expanding to all CD4 levels decreases HIV infections by 3.3 million (45%) and costs by 0.6 billion versus current; other ART scenarios cost 17.5 billion. Sensitivity analyses suggest that poor retention and predominant acute phase transmission reduce DALYs averted by 26% and savings by 7%. Conclusion: Increasing the provision of ART to <350 cells/mm3 may significantly reduce costs while reducing the HIV burden. Feasibility including HIV testing and ART uptake, retention, and adherence should be evaluated
Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk
An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
Harnessing the secondary preventive benefit of antiretroviral treatment
Please help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected] (SA Centre for Epidemiological Modelling & Analysis
- …