1,658 research outputs found

    Induction of humoral immune response to multiple recombinant Rhipicephalus appendiculatus antigens and their effect on tick feeding success and pathogen transmission

    Get PDF
    BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ¹5° to ¹30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study

    Get PDF
    INTRODUCTION: Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. METHODS: In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). RESULTS: The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. CONCLUSIONS: The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study

    Long-term outcome and patterns of failure in patients with advanced head and neck cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To access the long-time outcome and patterns of failure in patients with advanced head and neck squamous cell carcinoma (HNSCC).</p> <p>Methods and materials</p> <p>Between 1992 and 2005 127 patients (median age 55 years, UICC stage III n = 6, stage IV n = 121) with primarily inoperable, advanced HNSCC were treated with definite platinum-based radiochemotherapy (median dose 66.4 Gy). Analysed end-points were overall survival (OS), disease-free survival (DFS), loco-regional progression-free survival (LPFS), development of distant metastases (DM), prognostic factors and causes of death.</p> <p>Results</p> <p>The mean follow-up time was 34 months (range, 3-156 months), the 3-, 5- and 10-year OS rates were 39%, 28% and 14%, respectively. The median OS was 23 months. Forty-seven patients achieved a complete remission and 78 patients a partial remission. The median LPFS was 17 months, the 3-, 5- and 10-year LPFS rates were 41%, 33% and 30%, respectively. The LPFS was dependent on the nodal stage (p = 0.029). The median DFS was 11 months (range, 2-156 months), the 3-, 5- and 10-year DFS rates were 30%, 24% and 22%, respectively. Prognostic factors in univariate analyses were alcohol abuse (n = 102, p = 0.015), complete remission (n = 47, p < 0.001), local recurrence (n = 71, p < 0.001), development of DM (n = 45, p < 0.001; median OS 16 months) and borderline significance in nodal stage N2 versus N3 (p = 0.06). Median OS was 26 months with lung metastases (n = 17). Nodal stage was a predictive factor for the development of DM (p = 0.025). Cause of death was most commonly tumor progression.</p> <p>Conclusions</p> <p>In stage IV HNSCC long-term survival is rare and DM is a significant predictor for mortality. If patients developed DM, lung metastases had the most favourable prognosis, so intensified palliative treatment might be justified in DM limited to the lungs.</p

    The use of full-setting non-invasive ventilation in the home care of people with amyotrophic lateral sclerosis-motor neuron disease with end-stage respiratory muscle failure: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Little has been written about the use of non-invasive ventilation in the home care of amyotrophic lateral sclerosis-motor neuron disease patients with end-stage respiratory muscle failure. Nocturnal use of non-invasive ventilation has been reported to improve daytime blood gases but continuous non-invasive ventilation dependence has not been studied in this regard. There continues to be great variation by country, economics, physician interest and experience, local concepts of palliation, hospice requirements, and resources available for home care. We report a case series of home-based amyotrophic lateral sclerosis-motor neuron disease patients who refused tracheostomy and advanced non-invasive ventilation to full-setting, while maintaining normal alveolar ventilation and oxygenation in the course of the disease. Since this topic has been presented in only one center in the United States and nowhere else, it is appropriate to demonstrate that this can be done in other countries as well.</p> <p>Case presentation</p> <p>We present here the cases of three Caucasian patients (a 51-year-old Caucasian man, a 45-year-old Caucasian woman and a 57-year-old Caucasian woman) with amyotrophic lateral sclerosis who developed continuous non-invasive ventilation dependence for 15 to 27 months without major complications and were able to maintain normal CO<sub>2 </sub>and pulse oxyhemoglobin saturation despite a non-measurable vital capacity. All patients were wheelchair-dependent and receiving riluzole 50 mg twice a day. Patient one developed mild-to-moderate bulbar-innervated muscle weakness. He refused tracheostomy but accepted percutaneous gastrostomy. Patient two had two lung infections, acute bronchitis and pneumonia, which were treated with antibiotics and cough assistance at home. Patient three had three chest infections (bronchitis and pneumonias) and asthmatic episodes treated with antibiotics, bronchodilators and cough assistance at home. All patients had normal speech while receiving positive pressure; they died suddenly and with normal oxygen saturation.</p> <p>Conclusions</p> <p>Although warned that prognosis was poor as vital capacity diminished, our patients survived without invasive airway tubes and despite non-measurable vital capacity. No patient opted for tracheostomy. Our patients demonstrate the feasibility of resorting to full-setting non-invasive management to prolong survival, optimizing wellness and management at home, and the chance to die peacefully.</p

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae

    Massively Parallel RNA Chemical Mapping with a Reduced Bias MAP-seq Protocol

    Full text link
    Chemical mapping methods probe RNA structure by revealing and leveraging correlations of a nucleotide's structural accessibility or flexibility with its reactivity to various chemical probes. Pioneering work by Lucks and colleagues has expanded this method to probe hundreds of molecules at once on an Illumina sequencing platform, obviating the use of slab gels or capillary electrophoresis on one molecule at a time. Here, we describe optimizations to this method from our lab, resulting in the MAP-seq protocol (Multiplexed Accessibility Probing read out through sequencing), version 1.0. The protocol permits the quantitative probing of thousands of RNAs at once, by several chemical modification reagents, on the time scale of a day using a table-top Illumina machine. This method and a software package MAPseeker (http://simtk.org/home/map_seeker) address several potential sources of bias, by eliminating PCR steps, improving ligation efficiencies of ssDNA adapters, and avoiding problematic heuristics in prior algorithms. We hope that the step-by-step description of MAP-seq 1.0 will help other RNA mapping laboratories to transition from electrophoretic to next-generation sequencing methods and to further reduce the turnaround time and any remaining biases of the protocol.Comment: 22 pages, 5 figure

    Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates

    Get PDF
    The synergistic interaction between various hemi/cellulolytic enzymes has become more important in order to achieve effective and optimal degradation of complex lignocellulose substrates for biofuel production. This study investigated the synergistic effect of three enzymes endoglucanase (EngE), mannanase (ManA) and xylanase (XynA) on the degradation of corn stalk, grass, and pineapple fruit pulp and determined the optimal degree of synergy between combinations of these enzymes. It was established that EngE was essential for degradation of all of the substrates, while the hemicellulases were able to contribute in a synergistic fashion to increase the activity on these substrates. Maximum specific activity and degree of synergy on the corn stalk and grass was found with EngE:XynA in a ratio of 75:25%, with a specific activity of 41.1 U/mg protein and a degree of synergy of 6.3 for corn stalk, and 44.1 U/mg protein and 3.4 for grass, respectively. The pineapple fruit pulp was optimally digested using a ManA:EngE combination in a 50:50% ratio; the specific activity and degree of synergy achieved were 52.4 U/mg protein and 2.7, respectively. This study highlights the importance of hemicellulases for the synergistic degradation of complex lignocellulose. The inclusion of a mannanase in an enzyme consortium for biomass degradation should be examined further as this study suggests that it may play an important, although mostly overlooked, role in the synergistic saccharification of lignocellulose

    Negative responses of highland pines to anthropogenic activities in inland Spain: a palaeoecological perspective

    Get PDF
    Palaeoecological evidence indicates that highland pines were dominant in extensive areas of the mountains of Central and Northern Iberia during the first half of the Holocene. However, following several millennia of anthropogenic pressure, their natural ranges are now severely reduced. Although pines have been frequently viewed as first-stage successional species responding positively to human disturbance, some recent palaeobotanical work has proposed fire disturbance and human deforestation as the main drivers of this vegetation turnover. To assess the strength of the evidence for this hypothesis and to identify other possible explanations for this scenario, we review the available information on past vegetation change in the mountains of northern inland Iberia. We have chosen data from several sites that offer good chronological control, including palynological records with microscopic charcoal data and sites with plant macro- and megafossil occurrence. We conclude that although the available long-term data are still fragmentary and that new methods are needed for a better understanding of the ecological history of Iberia, fire events and human activities (probably modulated by climate) have triggered the pine demise at different locations and different temporal scales. In addition, all palaeoxylological, palynological and charcoal results obtained so far are fully compatible with a rapid human-induced ecological change that could have caused a range contraction of highland pines in western Iberia

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore