23 research outputs found

    Status, Impact and Management of Invasive Alien Species in Tanzania

    Get PDF
    Invasive alien species (IAS) are among the significant drivers of environmental change worldwide and important causes of biodiversity losses. They contribute to economic hardship and social instability, placing constraints on sustainable development, economic growth, and ecological problems in various parts of the world, including Tanzania. This study was undertaken to provide information on the status of invasive species and their management needs in Tanzania. The study used three methodological approaches including documentary search, interviews with relevant stakeholders and limited field visits. Findings from the study have indicated that the awareness, trends, distribution and impacts of the invasive alien species in Tanzania are variable, and similarly are the management and control requirements and practices for these species. Among the major impacts associated with the IAS in the country include loss of biodiversity, where in some cases has caused disappearance of certain species of fauna and flora, social and economic distress to human being due to the disappearance of plants and animal species that are regarded as important sources of livelihoods. The study shows that currently there is limited demonstrated capacity in terms of human and financial resources to address the issue of IAS, except for a few cases such as the water hyacinth (Eichhornia crassipes) in Lake Victoria. In addition, there are no clearly defined long term strategies to address the issue of invasive species in many institutions. Experience shows that many of the legislations and policies dealing with biodiversity and/or resource management in the country do not directly address invasive alien species. This shortfall may be responsible for the inadequate attention being accorded to the management of invasive species. Thus for effective management of invasive alien species, policies and legislations should be encouraged to directly deal with invasive species. Such situation calls for integrated efforts including various institutional frameworks and collaborations.Key words: Invasive alien species, biodiversity loss, management of IAS,sustainable development, Tanzania

    Malaria mosquito control using edible fish in western Kenya: preliminary findings of a controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological control methods are once again being given much research focus for malaria vector control. This is largely due to the emerging threat of strong resistance to pesticides. Larvivorous fish have been used for over 100 years in mosquito control and many species have proved effective. In the western Kenyan highlands the larvivorous fish <it>Oreochromis niloticus </it>L. (Perciformes: Cichlidae) (formerly <it>Tilapia nilotica</it>) is commonly farmed and eaten but has not been previously tested in the field for malaria mosquito control.</p> <p>Methods</p> <p>This fish was introduced into abandoned fishponds at an altitude of 1,880 m and the effect measured over six months on the numbers of mosquito immatures. For comparison an untreated control pond was used. During this time, all ponds were regularly cleared of emergent vegetation and fish re-stocking was not needed. Significant autocorrelation was removed from the time series data, and t-tests were used to investigate within a pond and within a mosquito type any differences before and after the introduction of <it>O. niloticus</it>. Mulla's formula was also used on the raw data to calculate the percentage reduction of the mosquito larvae.</p> <p>Results</p> <p>After <it>O. niloticus </it>introduction, mosquito densities immediately dropped in the treated ponds but increased in the control pond. This increase was apparently due to climatic factors. Mulla's formula was applied which corrects for that natural tendency to increase. The results showed that after 15 weeks the fish caused a more than 94% reduction in both <it>Anopheles gambiae s.l</it>. and <it>Anopheles funestus </it>(Diptera: Culicidae) in the treated ponds, and more than 75% reduction in culicine mosquitoes. There was a highly significantly reduction in <it>A. gambiae s.l</it>. numbers when compared to pre-treatment levels.</p> <p>Conclusion</p> <p>This study reports the first field trial data on <it>O. niloticus </it>for malaria mosquito control and shows that this species, already a popular food fish in western Kenya, is an apparently sustainable mosquito control tool which also offers a source of protein and income to people in rural areas. There should be no problem with acceptance of this malaria control method since the local communities already farm this fish species.</p

    Unexpected High Losses of Anopheles gambiae Larvae Due to Rainfall

    Get PDF
    Background - Immature stages of the malaria mosquito Anopheles gambiae experience high mortality, but its cause is poorly understood. Here we study the impact of rainfall, one of the abiotic factors to which the immatures are frequently exposed, on their mortality. Methodology/Principal Findings - We show that rainfall significantly affected larval mosquitoes by flushing them out of their aquatic habitat and killing them. Outdoor experiments under natural conditions in Kenya revealed that the additional nightly loss of larvae caused by rainfall was on average 17.5% for the youngest (L1) larvae and 4.8% for the oldest (L4) larvae; an additional 10.5% (increase from 0.9 to 11.4%) of the L1 larvae and 3.3% (from 0.1 to 3.4%) of the L4 larvae were flushed away and larval mortality increased by 6.9% (from 4.6 to 11.5%) and 1.5% (from 4.1 to 5.6%) for L1 and L4 larvae, respectively, compared to nights without rain. On rainy nights, 1.3% and 0.7% of L1 and L4 larvae, respectively, were lost due to ejection from the breeding site. Conclusions/Significance - This study demonstrates that immature populations of malaria mosquitoes suffer high losses during rainfall events. As these populations are likely to experience several rain showers during their lifespan, rainfall will have a profound effect on the productivity of mosquito breeding sites and, as a result, on the transmission of malaria. These findings are discussed in the light of malaria risk and changing rainfall patterns in response to climate chang

    Health research ethics in malaria vector trials in Africa

    Get PDF
    Malaria mosquito research in Africa as elsewhere is just over a century old. Early trials for development of mosquito control tools were driven by colonial enterprises and war efforts; they were, therefore, tested in military or colonial settings. The failure of those tools and environmental concerns, coupled with the desperate need for integrated malaria control strategies, has necessitated the development of new malaria mosquito control tools, which are to be tested on humans, their environment and mosquito habitats. Ethical concerns start with phase 2 trials, which pose limited ethical dilemmas. Phase 3 trials, which are undertaken on vulnerable civilian populations, pose ethical dilemmas ranging from individual to community concerns. It is argued that such trials must abide by established ethical principles especially safety, which is mainly enshrined in the principle of non-maleficence. As there is total lack of experience with many of the promising candidate tools (eg genetically modified mosquitoes, entomopathogenic fungi, and biocontrol agents), great caution must be exercised before they are introduced in the field. Since malaria vector trials, especially phase 3 are intrusive and in large populations, individual and community respect is mandatory, and must give great priority to community engagement. It is concluded that new tools must be safe, beneficial, efficacious, effective, and acceptable to large populations in the short and long-term, and that research benefits should be equitably distributed to all who bear the brunt of the research burdens. It is further concluded that individual and institutional capacity strengthening should be provided, in order to undertake essential research, carry out scientific and ethical review, and establish competent regulatory frameworks
    corecore