142 research outputs found
New Limits on the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment
We report initial results of the first flight of the Antarctic Impulsive
Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which
searched for evidence of a diffuse flux of cosmic neutrinos above energies of 3
EeV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan
effect in neutrino-induced electromagnetic showers within the Antarctic ice
sheets. We report here on our initial analysis, which was performed as a blind
search of the data. No neutrino candidates are seen, with no detected physics
background. We set model-independent limits based on this result. Upper limits
derived from our analysis rule out the highest cosmogenic neutrino models. In a
background horizontal-polarization channel, we also detect six events
consistent with radio impulses from ultra-high energy extensive air showers.Comment: 4 pages, 2 table
High Energy Neutrino Astronomy: Towards Kilometer-Scale Detectors
Of all high-energy particles, only neutrinos can directly convey astronomical
information from the edge of the universe---and from deep inside the most
cataclysmic high-energy processes. Copiously produced in high-energy
collisions, travelling at the velocity of light, and not deflected by magnetic
fields, neutrinos meet the basic requirements for astronomy. Their unique
advantage arises from a fundamental property: they are affected only by the
weakest of nature's forces (but for gravity) and are therefore essentially
unabsorbed as they travel cosmological distances between their origin and us.
Many of the outstanding mysteries of astrophysics may be hidden from our sight
at all wavelengths of the electromagnetic spectrum because of absorption by
matter and radiation between us and the source. For example, the hot dense
regions that form the central engines of stars and galaxies are opaque to
photons. In other cases, such as supernova remnants, gamma ray bursters, and
active galaxies, all of which may involve compact objects or black holes at
their cores, the precise origin of the high-energy photons emerging from their
surface regions is uncertain. Therefore, data obtained through a variety of
observational windows---and especially through direct observations with
neutrinos---may be of cardinal importance. In this talk, the scientific goals
of high energy neutrino astronomy and the technical aspects of water and ice
Cherenkov detectors are examined, and future experimental possibilities,
including a kilometer-square deep ice neutrino telescope, are explored.Comment: 13 pages, Latex, 6 postscript figures, uses aipproc.sty and epsf.sty.
Talk presented at the International Symposium on High Energy Gamma Ray
Astronomy, Heidelberg, June 200
Flavor conversion of cosmic neutrinos from hidden jets
High energy cosmic neutrino fluxes can be produced inside relativistic jets
under the envelopes of collapsing stars. In the energy range E ~ (0.3 - 1e5)
GeV, flavor conversion of these neutrinos is modified by various matter effects
inside the star and the Earth. We present a comprehensive (both analytic and
numerical) description of the flavor conversion of these neutrinos which
includes: (i) oscillations inside jets, (ii) flavor-to-mass state transitions
in an envelope, (iii) loss of coherence on the way to observer, and (iv)
oscillations of the mass states inside the Earth. We show that conversion has
several new features which are not realized in other objects, in particular
interference effects ("L- and H- wiggles") induced by the adiabaticity
violation. The neutrino-neutrino scattering inside jet and inelastic neutrino
interactions in the envelope may produce some additional features at E > 1e4
GeV. We study dependence of the probabilities and flavor ratios in the
matter-affected region on angles theta13 and theta23, on the CP-phase delta, as
well as on the initial flavor content and density profile of the star. We show
that measurements of the energy dependence of the flavor ratios will, in
principle, allow to determine independently the neutrino and astrophysical
parameters.Comment: 56 pages, 19 figures. Minor changes. Accepted by JHEP
Detecting Ultra High Energy Neutrinos by Upward Tau Airshowers and Gamma Flashes
Tau Air-showers are the best trace of rarest Ultra High Energy neutrinos UHE
, and at PeV and higher energy.
Air-showers may generate billion times amplified signals by their
secondaries . Horizontal amplified air-showers by and UHE
at PeV emerging from mountain chain might be the most
power-full imprint. Upward UHE interaction on Earth crust at
horizontal edge and from below, their consequent UHE air-showers beaming
toward high mountains should flash ,,X and optical detectors on
the top.
Upward air-shower may hit nearby satellite flashing them by short,
hard, diluted burst at the edge of Gamma Ray Observatory BATSE
threshold. We identify these events with recent (1994) discovered upward
Terrestrial Gamma Flashes (TGF) and we probed their UHE - UHE
origin. From these TGF data approximated UHE flux and sever lower bound are derived. Partial TGF Galactic
signature is also manifest within known 47 TGF events clustered within three
degrees from the Galactic plane at probability. Well
known active galactic and extragalactic sources have
found probable counterpart in TGF arrival directions. Detection of elusive UHE
seem finally achieved.Comment: 8 pages,4 Figs, DARK 2000 Conference in UCL
Observations of the Askaryan Effect in Ice
We report on the first observations of the Askaryan effect in ice: coherent impulsive radio Cherenkov radiation from the charge asymmetry in an electromagnetic (EM) shower. Such radiation has been observed in silica sand and rock salt, but this is the first direct observation from an EM shower in ice. These measurements are important since the majority of experiments to date that rely on the effect for ultra-high energy neutrino detection are being performed using ice as the target medium. As part of the complete validation process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we performed an experiment at the Stanford Linear Accelerator Center (SLAC) in June 2006 using a 7.5 metric ton ice target, yielding results fully consistent with theoretical expectations
KamLAND Sensitivity to Neutrinos from Pre-Supernova Stars
In the late stages of nuclear burning for massive stars (M>8~M_{\sun}), the
production of neutrino-antineutrino pairs through various processes becomes the
dominant stellar cooling mechanism. As the star evolves, the energy of these
neutrinos increases and in the days preceding the supernova a significant
fraction of emitted electron anti-neutrinos exceeds the energy threshold for
inverse beta decay on free hydrogen. This is the golden channel for liquid
scintillator detectors because the coincidence signature allows for significant
reductions in background signals. We find that the kiloton-scale liquid
scintillator detector KamLAND can detect these pre-supernova neutrinos from a
star with a mass of 25~M_{\sun} at a distance less than 690~pc with 3
significance before the supernova. This limit is dependent on the neutrino mass
ordering and background levels. KamLAND takes data continuously and can provide
a supernova alert to the community.Comment: 19 pages, 6 figures, 1 tabl
Search for astronomical neutrinos from blazar TXS 0506+056 in super-kamiokande
We report a search for astronomical neutrinos in the energy region from several GeV to TeV in the direction of the blazar TXS 0506+056 using the Super-Kamiokande detector following the detection of a 100 TeV neutrinos from the same location by the IceCube collaboration. Using Super-Kamiokande neutrino data across several data samples observed from 1996 April to 2018 February we have searched for both a total excess above known backgrounds across the entire period as well as localized excesses on smaller timescales in that interval. No significant excess nor significant variation in the observed event rate are found in the blazar direction. Upper limits are placed on the electron- and muon-neutrino fluxes at the 90% confidence level as 6.0 × 10−7 and 4.5 × 10−7–9.3 × 10−10 [erg cm−2 s−1], respectively
A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande
Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW 10 sec integrated proton beam power (corresponding to protons on target with a 30 GeV proton beam) to a -degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the phase can be determined to better than 19 degrees for all possible values of , and violation can be established with a statistical significance of more than () for () of the parameter space
Observation of Ultrahigh-Energy Cosmic Rays with the ANITA Balloon-Borne Radio Interferometer
We report the observation of 16 cosmic ray events with a mean energy of 1: 5 x 10(19) eV via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission. We present measurements in the 300-900 MHz range, which are the first self-triggered, first ultrawide band, first far-field, and the highest energy sample of cosmic ray events collected with the radio technique. Their properties are inconsistent with current ground-based geosynchrotron models. The emission is 100% polarized in the plane perpendicular to the projected geomagnetic field. Fourteen events are seen to have a phase inversion due to reflection of the radio beam off the ice surface, and two additional events are seen directly from above the horizon. Based on a likelihood analysis, we estimate angular pointing precision of order 2 degrees for the event arrival directions
Characteristics of Four Upward-Pointing Cosmic-Ray-like Events Observed with ANITA
We report on four radio-detected cosmic-ray (CR) or CR-like events observed with the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload. Two of the four were previously identified as stratospheric CR air showers during the ANITA-I flight. A third stratospheric CR was detected during the ANITA-II flight. Here, we report on characteristics of these three unusual CR events, which develop nearly horizontally, 20-30 km above the surface of Earth. In addition, we report on a fourth steeply upward-pointing ANITA-I CR-like radio event which has characteristics consistent with a primary that emerged from the surface of the ice. This suggests a possible τ-lepton decay as the origin of this event, but such an interpretation would require significant suppression of the standard model τ-neutrino cross section
- …
