4,136 research outputs found

    Electrical properties of HfTiON gate-dielectric metal-oxide-semiconductor capacitors with different Si-surface nitridations

    Get PDF
    Electrical properties of HfTiON gate-dielectric metal-oxide-semiconductor (MOS) capacitors with different Si-surface nitridations in N2 O, NO, and N H3 prior to high- k film deposition are investigated and compared. It is found that the NO-nitrided sample exhibits low interface-state density and gate leakage current, and high reliability. This is attributed to formation of a SiON interlayer with suitable proportions of N and O. The MOS capacitor with Hf0.4 Ti0.6 Ox Ny SiON gate dielectric stack (capacitance equivalent thickness of 1.52 nm and k value of 18.9) prepared by NO surface nitridation has an interface-state density of 1.22× 1011 cm-2 eV-1 and gate leakage current density of 6× 10-4 A cm-2 (Vg =1 V). Moreover, only a small degradation of electrical properties after a stressing at 10 MVcm for 3000 s is observed for the NO-nitrided sample. © 2007 American Institute of Physics.published_or_final_versio

    Improved electrical properties of metal-oxide-semiconductor capacitor with HfTiON gate dielectric by using HfSiON interlayer

    Get PDF
    Metal-oxide-semiconductor (MOS) capacitor with HfTiONHfSiON stack structure as high- k gate dielectric is fabricated, and its electrical properties are compared with those of a similar device with HfTiON only as gate dielectric. Experimental results show that the device with HfTiONHfSiON gate dielectric exhibits better interface properties, lower gate leakage current, and enhanced high-field reliability. All these improvements should be attributed to the fact that the HfSiON buffer layer effectively blocks the diffusion of Ti atoms to the Si substrate, thus resulting in a Si O2 Si -like HfSiONSi interface. © 2007 American Institute of Physics.published_or_final_versio

    Improved electrical properties of Ge metal-oxide-semiconductor capacitor with HfTa-based gate dielectric by using TaOxNy interlayer

    Get PDF
    HfTa-based oxide and oxynitride with or without Ta Ox Ny interlayer are fabricated on Ge substrate to form metal-oxide-semiconductor (MOS) capacitors. Their electrical properties and reliabilities are measured and compared. The results show that the MOS capacitor with a gate stack of HfTa-based oxynitride and thin Ta Ox Ny interlayer exhibits low interface-state/oxide-charge densities, low gate leakage, small hysteresis, small capacitance equivalent thickness (∼0.94 nm), and high dielectric constant (∼24). All these should be attributed to the blocking role of the Ta Ox Ny interlayer against penetration of O into the Ge substrate and interdiffusions of Hf, Ge, and Ta, thus effectively suppressing the formation of unstable low- k Ge Ox and giving a superior Ta Ox Ny Ge interface. Moreover, incorporation of N into both the interlayer and high- k dielectric greatly improves device reliability through the formation of strong N-related bonds. © 2008 American Institute of Physics.published_or_final_versio

    Entropy Projection Curved Gabor with Random Forest and SVM for Face Recognition

    Get PDF
    In this work, we propose a workflow for face recognition under occlusion using the entropy projection from the curved Gabor filter, and create a representative and compact features vector that describes a face. Despite the reduced vector obtained by the entropy projection, it still presents opportunity for further dimensionality reduction. Therefore, we use a Random Forest classifier as an attribute selector, providing a 97% reduction of the original vector while keeping suitable accuracy. A set of experiments using three public image databases: AR Face, Extended Yale B with occlusion and FERET illustrates the proposed methodology, evaluated using the SVM classifier. The results obtained in the experiments show promising results when compared to the available approaches in the literature, obtaining 98.05% accuracy for the complete AR Face, 97.26% for FERET and 81.66% with Yale with 50% occlusion

    Ambipolar Field Effect in Topological Insulator Nanoplates of (BixSb1-x)2Te3

    Full text link
    Topological insulators represent a new state of quantum matter attractive to both fundamental physics and technological applications such as spintronics and quantum information processing. In a topological insulator, the bulk energy gap is traversed by spin-momentum locked surface states forming an odd number of surface bands that possesses unique electronic properties. However, transport measurements have often been dominated by residual bulk carriers from crystal defects or environmental doping which mask the topological surface contribution. Here we demonstrate (BixSb1-x)2Te3 as a tunable topological insulator system to manipulate bulk conductivity by varying the Bi/Sb composition ratio. (BixSb1-x)2Te3 ternary compounds are confirmed as topological insulators for the entire composition range by angle resolved photoemission spectroscopy (ARPES) measurements and ab initio calculations. Additionally, we observe a clear ambipolar gating effect similar to that observed in graphene using nanoplates of (BixSb1-x)2Te3 in field-effect-transistor (FET) devices. The manipulation of carrier type and concentration in topological insulator nanostructures demonstrated in this study paves the way for implementation of topological insulators in nanoelectronics and spintronics.Comment: 7 pages, 4 figure

    Characterization and Regulation of the Osmolyte Betaine Synthesizing Enzymes GSMT and SDMT from Halophilic Methanogen Methanohalophilus portucalensis

    Get PDF
    The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize the osmolyte betaine de novo in response to extracellular salt stress. Betaine is generated by the stepwise methylation of glycine to form sarcosine, N, N-dimethylglycine and betaine by using S-adenosyl-L-methionine (AdoMet) as the methyl donor. The complete gene cluster of Mpgsmt-sdmt was cloned from Southern hybridization and heterologous expressed in E. coli respectively. The recombinant MpGSMT and MpSDMT both retained their in vivo functional activities in E. coli BL21(DE3)RIL to synthesize and accumulate betaine and conferred elevated survival ability in betaine transport deficient mutant E. coli MKH13 under high salt stress. The dramatic activating effects of sodium and potassium ions on the in vitro methyltransferase activities of MpGSMT, but not MpSDMT or bacterial GSMT and SDMT, revealed that GSMT from halophilic methanoarchaeon possesses novel regulate mechanism in betaine biosynthesis pathway. The circular dichroism spectra showed the fluctuated peaks at 206 nm were detected in the MpGSMT under various concentrations of potassium or sodium ions. This fluctuated difference may cause by a change in the β-turn structure located at the conserved glycine- and sarcosine-binding residue Arg167 of MpGSMT. The analytical ultracentrifugation analysis indicated that the monomer MpGSMT switched to dimeric form increased from 7.6% to 70% with KCl concentration increased from 0 to 2.0 M. The level of potassium and sodium ions may modulate the substrate binding activity of MpGSMT through the conformational change. Additionally, MpGSMT showed a strong end product, betaine, inhibitory effect and was more sensitive to the inhibitor AdoHcy. The above results indicated that the first enzymatic step involved in synthesizing the osmolyte betaine in halophilic archaea, namely, GSMT, may also play a major role in coupling the salt-in and compatible solute (osmolyte) osmoadaptative strategies in halophilic methanogens for adapting to high salt environments

    Bistability in Apoptosis by Receptor Clustering

    Get PDF
    Apoptosis is a highly regulated cell death mechanism involved in many physiological processes. A key component of extrinsically activated apoptosis is the death receptor Fas, which, on binding to its cognate ligand FasL, oligomerize to form the death-inducing signaling complex. Motivated by recent experimental data, we propose a mathematical model of death ligand-receptor dynamics where FasL acts as a clustering agent for Fas, which form locally stable signaling platforms through proximity-induced receptor interactions. Significantly, the model exhibits hysteresis, providing an upstream mechanism for bistability and robustness. At low receptor concentrations, the bistability is contingent on the trimerism of FasL. Moreover, irreversible bistability, representing a committed cell death decision, emerges at high concentrations, which may be achieved through receptor pre-association or localization onto membrane lipid rafts. Thus, our model provides a novel theory for these observed biological phenomena within the unified context of bistability. Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our model also suggests a mechanism by which cells may function as bistable life/death switches independently of any such dynamics in their downstream components. Our results highlight the role of death receptors in deciding cell fate and add to the signal processing capabilities attributed to receptor clustering.Comment: Accepted by PLoS Comput Bio

    Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor

    Full text link
    Current cosmological models indicate that the Milky Way's stellar halo was assembled from many smaller systems. Based on the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. However, verification of the iron-deficiency and measurements of additional elements, such as the alpha-element Mg, are mandatory for demonstrating that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming the iron abundance of less than 1/4000th that of the Sun, and showing that the overall abundance pattern mirrors that seen in low-metallicity halo stars, including the alpha-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.Comment: 16 pages, including 2 figures. Accepted for publication in Nature. It is embargoed for discussion in the press until formal publication in Natur

    Poloxomer 188 Has a Deleterious Effect on Dystrophic Skeletal Muscle Function

    Get PDF
    Duchenne muscular dystrophy (DMD) is an X-linked, fatal muscle wasting disease for which there is currently no cure and limited palliative treatments. Poloxomer 188 (P188) is a tri-block copolymer that has been proposed as a potential treatment for cardiomyopathy in DMD patients. Despite the reported beneficial effects of P188 on dystrophic cardiac muscle function, the effects of P188 on dystrophic skeletal muscle function are relatively unknown. Mdx mice were injected intraperitoneally with 460 mg/kg or 30 mg/kg P188 dissolved in saline, or saline alone (control). The effect of single-dose and 2-week daily treatment was assessed using a muscle function test on the Tibialis Anterior (TA) muscle in situ in anaesthetised mice. The test comprises a warm up, measurement of the force-frequency relationship and a series of eccentric contractions with a 10% stretch that have previously been shown to cause a drop in maximum force in mdx mice. After 2 weeks of P188 treatment at either 30 or 460 mg/kg/day the drop in maximum force produced following eccentric contractions was significantly greater than that seen in saline treated control mice (P = 0.0001). Two week P188 treatment at either dose did not significantly change the force-frequency relationship or maximum isometric specific force produced by the TA muscle. In conclusion P188 treatment increases susceptibility to contraction-induced injury following eccentric contractions in dystrophic skeletal muscle and hence its suitability as a potential therapeutic for DMD should be reconsidered

    Multicomponent fractional quantum Hall effect in graphene

    Full text link
    We report observation of the fractional quantum Hall effect (FQHE) in high mobility multi-terminal graphene devices, fabricated on a single crystal boron nitride substrate. We observe an unexpected hierarchy in the emergent FQHE states that may be explained by strongly interacting composite Fermions with full SU(4) symmetric underlying degrees of freedom. The FQHE gaps are measured from temperature dependent transport to be up 10 times larger than in any other semiconductor system. The remarkable strength and unusual hierarcy of the FQHE described here provides a unique opportunity to probe correlated behavior in the presence of expanded quantum degrees of freedom.Comment: 5 pages, 3 figure
    • …
    corecore