67 research outputs found

    The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli : a comparison with the traditional gene fusion technology

    Get PDF
    The Escherichia coli host system is an advantageous choice for simple and inexpensive recombinant protein production but it still presents bottlenecks at expressing soluble proteins from other organisms. Several efforts have been taken to overcome E. coli limitations, including the use of fusion partners that improve protein expression and solubility. New fusion technologies are emerging to complement the traditional solutions. This work evaluates two novel fusion partners, the Fh8 tag (8 kDa) and the H tag (1 kDa), as solubility enhancing tags in E. coli and their comparison to commonly used fusion partners. A broad range comparison was conducted in a small-scale screening and subsequently scaled-up. Six difficult-to-express target proteins (RVS167, SPO14, YPK1, YPK2, Frutalin and CP12) were fused to eight fusion tags (His, Trx, GST, MBP, NusA, SUMO, H and Fh8). The resulting protein expression and solubility levels were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis before and after protein purification and after tag removal. The Fh8 partner improved protein expression and solubility as the well-known Trx, NusA or MBP fusion partners. The H partner did not function as a solubility tag. Cleaved proteins from Fh8 fusions were soluble and obtained in similar or higher amounts than proteins from the cleavage of other partners as Trx, NusA or MBP. The Fh8 fusion tag therefore acts as an effective solubility enhancer, and its low molecular weight potentially gives it an advantage over larger solubility tags by offering a more reliable assessment of the target protein solubility when expressed as a fusion protein.The financial support of the EMBL Heidelberg, Germany and Fundacao para a Ciencia e Tecnologia (FCT), Portugal, is acknowledged: the fellowship SFRH/BD/46482/2008 to Sofia J. Costa and the project PTDC/CVT/103081/2008. The authors wish to acknowledge Anne-Claude Gavin for providing four of the constructs for this study (RVS167, SPO14, YPK1, and YPK2) and Emmanuel Poilpre for the experimental help (both from the EMBL Heidelberg, Germany)

    Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Colletotrichum </it>is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of <it>Colletotrichum </it>are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of <it>Colletotrichum </it>spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil.</p> <p>Results</p> <p>A total of 304 actinomycetes were isolated and tested for their inhibitory activity against <it>Colletotrichum gloeosporioides </it>strains DoA d0762 and DoA c1060 and <it>Colletotrichum capsici </it>strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic <it>Saccharomyces cerevisiae </it>strain IFO 10217. Most isolates (222 out of 304, 73.0%) were active against at least one indicator fungus or yeast. Fifty four (17.8%) were active against three anthracnose fungi and 17 (5.6%) could inhibit the growth of all three fungi and <it>S. cerevisiae </it>used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87%) belong to the genus <it>Streptomyces </it>sp., while one each belongs to <it>Saccharopolyspora </it>(strain SB-2) and <it>Nocardiopsis </it>(strain CM-2) and two to <it>Nocardia </it>(strains BP-3 and LK-1). Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three indicator fungi. Preliminary analysis of crude extracts by high performance liquid chromatography (HPLC) indicated that the sample from strain JF-1 may contain a novel compound. Phylogenetic analysis revealed that this strain is closely related to <it>Streptomyces cavurensis </it>NRRL 2740 with 99.8% DNA homology of 16S rRNA gene (500 bp).</p> <p>Conclusion</p> <p>The present study suggests that rhizospheric soil is an attractive source for the discovery of a large number of actinomycetes with activity against <it>Colletotrichum </it>spp. An interesting strain (JF-1) with high inhibitory activity has the potential to produce a new compound that may be useful in the control of <it>Colletotrichum </it>spp.</p

    Synthetic biology to access and expand nature's chemical diversity

    Get PDF
    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology — including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits — and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products

    Recent developments in genetics and medically assisted reproduction : from research to clinical applications

    Get PDF
    Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.Peer reviewe
    corecore