74 research outputs found

    Fluorescence Single Particle Tracking for the Characterization of Submicron Protein Aggregates in Biological Fluids and Complex Formulations

    Get PDF
    To evaluate the potential of fluorescence single particle tracking (fSPT) for the characterization of submicron protein aggregates in human serum, plasma and formulations containing human serum albumin (HSA). A monoclonal IgG was covalently labeled with a fluorescent dye and cross-linked with glutaraldehyde. IgG aggregates and fluorescent beads of 0.1 mu m (control) were diluted in buffer, serum and plasma, and their size distributions were analyzed by fSPT and nanoparticle tracking analysis (NTA). In a separate experiment, IgG and HSA, fluorescently labeled with different dyes, were mixed and subjected to heat stress. The stressed sample was analyzed by fSPT using a dual color mode and by NTA. The accuracy and precision of fSPT proved to be comparable to NTA. fSPT was able to successfully measure all the samples in buffer, serum and plasma. The average size of the cross-linked protein aggregates showed a slight increase in biological fluids. Moreover, fSPT analysis showed that a significant proportion of the aggregates formed by subjecting an IgG/HSA mixture to heat stress were composed of both proteins. fSPT is a powerful technique for the characterization of submicron protein aggregates in biological fluids and complex formulations

    Characterization of Particles in Protein Solutions: Reaching the Limits of Current Technologies

    Get PDF
    Recent publications have emphasized the lack of characterization methods available for protein particles in a size range comprised between 0.1 and 10 μm and the potential risk of immunogenicity associated with such particles. In the present paper, we have investigated the performance of light obscuration, flow microscopy, and Coulter counter instruments for particle counting and sizing in protein formulations. We focused on particles 2–10 μm in diameter and studied the effect of silicon oil droplets originating from the barrel of pre-filled syringes, as well as the effect of high protein concentrations (up to 150 mg/ml) on the accuracy of particle characterization. Silicon oil was demonstrated to contribute significantly to the particle counts observed in pre-filled syringes. Inconsistent results were observed between different protein concentrations in the range 7.5–150 mg/ml for particles <10 μm studied by optical techniques (light obscuration and flow microscopy). However, the Coulter counter measurements were consistent across the same studied concentration range but required sufficient solution conductivity from the formulation buffer or excipients. Our results show that currently available technologies, while allowing comparisons between samples of a given protein at a fixed concentration, may be unable to measure particle numbers accurately in a variety of protein formulations, e.g., at high concentration in sugar-based formulations

    Detection and characterization of subvisible aggregates of monoclonal lgG in serum

    Get PDF
    To detect and characterize the aggregation of therapeutic monoclonal antibodies in undiluted biological fluids. Fluorescently labeled subvisible IgG aggregates formed by applying either heat stress or by pH-shift were investigated immediately after addition to human serum, and after 24 h. Unstressed and stressed IgG formulations were analyzed by fluorescence single particle tracking, confocal laser scanning microscopy and flow cytometry. Unstressed formulations remained free from subvisible aggregates in serum, whereas heat-stressed and pH-shift stressed formulations showed dissimilar aggregation behaviors. The aggregation profile of the heat-stressed formulation diluted in serum remained practically the same as the one diluted in buffer, even after the 24 h incubation period. The pH-shift stressed formulation had strikingly smaller and more numerous subvisible aggregates immediately after dilution in serum compared to buffer. These aggregates became noticeably larger in both diluents after 24 h, but in serum they appeared to be formed by other types of constituents than the labeled protein itself. These results show that subvisible therapeutic protein aggregates may undergo changes in number, type and size distribution upon contact with human serum. This emphasizes the importance of analytical strategies for monitoring aggregation in undiluted biological fluids

    The human exosome: an autoantigenic complex of exoribonucleases in myositis and scleroderma

    Get PDF
    The anti-PM/Scl autoantibodies are known to characterize a subset of autoimmune patients with myositis, scleroderma (Scl), and the PM/Scl overlap syndrome. The major autoantigens that are recognized by anti-PM/Scl autoantibodies are designated PM/Scl-100 and PM/Scl-75. These autoantigens have been reported to associate into a large complex consisting of 11 to 16 proteins and to play a role in ribosome synthesis. Recently, it was discovered that the PM/Scl complex is the human counterpart of the yeast (Saccharomyces cerevisiae) exosome, which is an RNA-processing complex consisting of 11 3' → 5' exoribonucleases. To date, 10 human exosome components have been identified, although only some of these were studied in more detail. In this review, we discuss some recent advances in the characterization of the PM/Scl complex

    The anti-vaccination movement and resistance to allergen-immunotherapy: a guide for clinical allergists

    Get PDF
    Despite over a century of clinical use and a well-documented record of efficacy and safety, a growing minority in society questions the validity of vaccination and fear that this common public health intervention is the root-cause of severe health problems. This article questions whether growing public anti-vaccine sentiments might have the potential to spill-over into other therapies distinct from vaccination, namely allergen-immunotherapy. Allergen-immunotherapy shares certain medical vernacular with vaccination (e.g., allergy shots, allergy vaccines), and thus may become "guilty by association" due to these similarities. Indeed, this article demonstrates that anti-vaccine websites have begun unduly discrediting this allergy treatment regimen. Following an explanation of the anti-vaccine movement, the article aims to provide guidance on how clinicians can respond to patient fears towards allergen-immunotherapy in the clinical setting. This guide focuses on the provision of reliable information to patients in order to dispel misconceived associations between vaccination and allergen-immunotherapy, and the discussion of the risks and benefits of both therapies in order to assist patients in making autonomous decisions about their choice of allergy treatment

    A short history of the 5-HT2C receptor: from the choroid plexus to depression, obesity and addiction treatment

    Get PDF
    This paper is a personal account on the discovery and characterization of the 5-HT2C receptor (first known as the 5- HT1C receptor) over 30 years ago and how it translated into a number of unsuspected features for a G protein-coupled receptor (GPCR) and a diversity of clinical applications. The 5-HT2C receptor is one of the most intriguing members of the GPCR superfamily. Initially referred to as 5-HT1CR, the 5-HT2CR was discovered while studying the pharmacological features and the distribution of [3H]mesulergine-labelled sites, primarily in the brain using radioligand binding and slice autoradiography. Mesulergine (SDZ CU-085), was, at the time, best defined as a ligand with serotonergic and dopaminergic properties. Autoradiographic studies showed remarkably strong [3H]mesulergine-labelling to the rat choroid plexus. [3H]mesulergine-labelled sites had pharmacological properties different from, at the time, known or purported 5-HT receptors. In spite of similarities with 5-HT2 binding, the new binding site was called 5-HT1C because of its very high affinity for 5-HT itself. Within the following 10 years, the 5-HT1CR (later named 5- HT2C) was extensively characterised pharmacologically, anatomically and functionally: it was one of the first 5-HT receptors to be sequenced and cloned. The 5-HT2CR is a GPCR, with a very complex gene structure. It constitutes a rarity in theGPCR family: many 5-HT2CR variants exist, especially in humans, due to RNA editing, in addition to a few 5-HT2CR splice variants. Intense research led to therapeutically active 5-HT2C receptor ligands, both antagonists (or inverse agonists) and agonists: keeping in mind that a number of antidepressants and antipsychotics are 5- HT2CR antagonists/inverse agonists. Agomelatine, a 5-HT2CR antagonist is registered for the treatment of major depression. The agonist Lorcaserin is registered for the treatment of aspects of obesity and has further potential in addiction, especially nicotine/ smoking. There is good evidence that the 5-HT2CR is involved in spinal cord injury-induced spasms of the lower limbs, which can be treated with 5-HT2CR antagonists/inverse agonists such as cyproheptadine or SB206553. The 5-HT2CR may play a role in schizophrenia and epilepsy. Vabicaserin, a 5-HT2CR agonist has been in development for the treatment of schizophrenia and obesity, but was stopped. As is common, there is potential for further indications for 5-HT2CR ligands, as suggested by a number of preclinical and/or genome-wide association studies (GWAS) on depression, suicide, sexual dysfunction, addictions and obesity. The 5-HT2CR is clearly affected by a number of established antidepressants/antipsychotics and may be one of the culprits in antipsychotic-induced weight gain
    corecore