1,892 research outputs found

    Why business angels reject investment opportunities: Is it personal?

    Get PDF
    A major focus of research on business angels has examined their decision-making processes and investment criteria. As business angels reject most of the opportunities that they receive, this article explores the reasons informing such decisions. In view of angel heterogeneity, investment opportunities might be expected to be rejected for differing reasons. Two sources of data are used to examine this issue. Face-to-face interviews with 30 business angels in Scotland and Northern Ireland provided information on typical ‘deal killers’. This was complemented by an Internet survey of United Kingdom that attracted responses from 238 UK business angels. The findings confirm that the main reason for rejection relates to the entrepreneur/management team. However, angel characteristics do not explain the number of reasons given for opportunity rejection nor do they predict the reasons for rejecting investment opportunities. This could be related to the increasing trend for business angels to join organised groups which, in turn, leads to the development of a shared repertoire of investment approaches. We suggest the concept of ‘communities-of-practice’ as an explanation for this finding

    Addressing the sample size problem in behavioural operational research: simulating the newsvendor problem

    Get PDF
    Laboratory-based experimental studies with human participants are beneficial for testing hypotheses in behavioural operational research. However, such experiments are not without their problems. One specific problem is obtaining a sufficient sample size, not only in terms of the number of participants but also the time they are willing to devote to an experiment. In this paper, we explore how agent-based simulation (ABS) can be used to address the sample size problem and demonstrate the approach in the newsvendor setting. The decision-making strategies of a small sample of individual decision-makers are determined through laboratory experiments. The interactions of these suppliers and retailers are then simulated using an ABS to generate a large sample set of decisions. With only a small number of participants, we demonstrate that it is possible to produce similar results to previous experimental studies that involved much larger sample sizes. We conclude that ABS provides the potential to extend the scope of experimental research in behavioural operational research

    Non-simply-laced Lie algebras via F theory strings

    Get PDF
    In order to describe the appearance in F theory of the non--simply--laced Lie algebras, we use the representation of symmetry enhancements by means of string junctions. After an introduction to the techniques used to describe symmetry enhancement, that is algebraic geometry, BPS states analysis and string junctions, we concentrate on the latter. We give an explicit description of the folding of D_{2n} to B_n of the folding of E_6 to F_4 and that of D_4 to G_2 in terms of junctions and Jordan strings. We also discuss the case of C_n, but we are unable in this case to provide a string interpretation.Comment: 24 pages, 3 figure

    An Over-Massive Black Hole in the Compact Lenticular Galaxy NGC1277

    Get PDF
    All massive galaxies likely have supermassive black holes at their centers, and the masses of the black holes are known to correlate with properties of the host galaxy bulge component. Several explanations have been proposed for the existence of these locally-established empirical relationships; they include the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, or galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are thus important for distinguishing between various theoretical models of galaxy evolution, and they further form the basis for all black hole mass measurements at large distances. In particular, observations have shown that the mass of the black hole is typically 0.1% of the stellar bulge mass of the galaxy. The small galaxy NGC4486B currently has the largest published fraction of its mass in a black hole at 11%. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, disky galaxy with a mass of 1.2 x 10^11 Msun. From the data, we determine that the mass of the central black hole is 1.7 x 10^10 Msun, or 59% its bulge mass. Five other compact galaxies have properties similar to NGC 1277 and therefore may also contain over-sized black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the normal black hole mass scaling relations.Comment: 7 pages. 6 figures. Nature. Animation at http://www.mpia.de/~bosch/blackholes.htm

    Use of mixed methods designs in substance research: a methodological necessity in Nigeria

    Get PDF
    The utility of mixed methods (qualitative and quantitative) is becoming increasingly accepted in health sciences, but substance studies are yet to substantially benefit from such utilities. While there is a growing number of mixed methods alcohol articles concerning developed countries, developing nations are yet to embrace this method. In the Nigerian context, the importance of mixed methods research is yet to be acknowledged. This article therefore, draws on alcohol studies to argue that mixed methods designs will better equip scholars to understand, explore, describe and explain why alcohol consumption and its related problems are increasing in Nigeria. It argues that as motives for consuming alcohol in contemporary Nigeria are multiple, complex and evolving, mixed method approaches that provide multiple pathways for proffering solutions to problems should be embraced

    Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants

    Get PDF
    Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed

    A Terminal Velocity on the Landscape: Particle Production near Extra Species Loci in Higher Dimensions

    Full text link
    We investigate particle production near extra species loci (ESL) in a higher dimensional field space and derive a speed limit in moduli space at weak coupling. This terminal velocity is set by the characteristic ESL-separation and the coupling of the extra degrees of freedom to the moduli, but it is independent of the moduli's potential if the dimensionality of the field space is considerably larger than the dimensionality of the loci, D >> d. Once the terminal velocity is approached, particles are produced at a plethora of nearby ESLs, preventing a further increase in speed via their backreaction. It is possible to drive inflation at the terminal velocity, providing a generalization of trapped inflation with attractive features: we find that more than sixty e-folds of inflation for sub-Planckian excursions in field space are possible if ESLs are ubiquitous, without fine tuning of initial conditions and less tuned potentials. We construct a simple, observationally viable model with a slightly red scalar power-spectrum and suppressed gravitational waves; we comment on the presence of additional observational signatures originating from IR-cascading and individual massive particles. We also show that moduli-trapping at an ESL is suppressed for D >> d, hindering dynamical selection of high-symmetry vacua on the landscape based on this mechanism.Comment: 46 pages, 6 figures. V3: typos corrected compared to JHEP version, conclusions unchange
    corecore