65 research outputs found

    Ontogenetic trajectories of body coloration reveal its function as a multicomponent nonsenescent signal

    Get PDF
    The understanding of developmental patterns of body coloration is challenging because of the multicomponent nature of color signals and the multiple selective pressures acting upon them, which further depend on the sex of the bearer and area of display. Pigmentary colors are thought to be strongly involved in sexual selection, while structural colors are thought to generally associate with conspecifics interactions and improve the discrimination of pigmentary colors. Yet, it remains unclear whether age dependency in each color component is consistent with their potential function. Here, we address lifelong ontogenetic variation in three color components (i.e. UV, pigmentary, and skin background colors) in a birth cohort of common lizards Zootoca vivipara across three ventral body regions (i.e. throat, chest, and belly). All three color components developed sexual dichromatism, with males displaying stronger pigmentary and UV colors but weaker skin background coloration than females. The development of color components led to a stronger sexual dichromatism on the concealed ventral region than on the throat. No consistent signs of late‐life decay in color components were found except for a deceleration of UV reflectance increase with age on the throat of males. These results suggest that body color components in common lizards are primarily nonsenescent sexual signals, but that the balance between natural and sexual selection may be altered by the conspicuousness of the area of display. These results further support the view that skin coloration is a composite trait constituted of multiple color components conveying multiple signals depending on age, sex, and body location

    Cloacal Bacterial Diversity Increases with Multiple Mates: Evidence of Sexual Transmission in Female Common Lizards

    Get PDF
    Sexually transmitted diseases have often been suggested as a potential cost of multiple mating and as playing a major role in the evolution of mating systems. Yet there is little empirical data relating mating strategies to sexually transmitted microorganisms in wild populations. We investigated whether mating behaviour influences the diversity and composition of cloacal assemblages by comparing bacterial communities in the cloaca of monandrous and polyandrous female common lizards Zootoca vivipara sampled after the mating period. We found that polyandrous females harboured more diverse communities and differed more in community composition than did monandrous females. Furthermore, cloacal diversity and variability were found to decrease with age in polyandrous females. Our results suggest that the higher bacterial diversity found in polyandrous females is due to the sexual transmission of bacteria by multiple mates. The impact of mating behaviour on the cloacal microbiota may have fitness consequences for females and may comprise a selective pressure shaping the evolution of mating systems

    Spatial Pattern Switching Enables Cyclic Evolution in Spatial Epidemics

    Get PDF
    Infectious diseases often spread as spatial epidemic outbreak waves. A number of model studies have shown that such spatial pattern formation can have important consequences for the evolution of pathogens. Here, we show that such spatial patterns can cause cyclic evolutionary dynamics in selection for the length of the infectious period. The necessary reversal in the direction of selection is enabled by a qualitative change in the spatial pattern from epidemic waves to irregular local outbreaks. The spatial patterns are an emergent property of the epidemic system, and they are robust against changes in specific model assumptions. Our results indicate that emergent spatial patterns can act as a rich source for complexity in pathogen evolution

    Costs of Reproduction and Terminal Investment by Females in a Semelparous Marsupial

    Get PDF
    Evolutionary explanations for life history diversity are based on the idea of costs of reproduction, particularly on the concept of a trade-off between age-specific reproduction and parental survival, and between expenditure on current and future offspring. Such trade-offs are often difficult to detect in population studies of wild mammals. Terminal investment theory predicts that reproductive effort by older parents should increase, because individual offspring become more valuable to parents as the conflict between current versus potential future offspring declines with age. In order to demonstrate this phenomenon in females, there must be an increase in maternal expenditure on offspring with age, imposing a fitness cost on the mother. Clear evidence of both the expenditure and fitness cost components has rarely been found. In this study, we quantify costs of reproduction throughout the lifespan of female antechinuses. Antechinuses are nocturnal, insectivorous, forest-dwelling small (20–40 g) marsupials, which nest in tree hollows. They have a single synchronized mating season of around three weeks, which occurs on predictable dates each year in a population. Females produce only one litter per year. Unlike almost all other mammals, all males, and in the smaller species, most females are semelparous. We show that increased allocation to current reproduction reduces maternal survival, and that offspring growth and survival in the first breeding season is traded-off with performance of the second litter in iteroparous females. In iteroparous females, increased allocation to second litters is associated with severe weight loss in late lactation and post-lactation death of mothers, but increased offspring growth in late lactation and survival to weaning. These findings are consistent with terminal investment. Iteroparity did not increase lifetime reproductive success, indicating that terminal investment in the first breeding season at the expense of maternal survival (i.e. semelparity) is likely to be advantageous for females

    The muscle – fat duel or why obese children are taller?

    Get PDF
    BACKGROUND: Obesity the epidemic of our times appears to be a problem that is easy to resolve: just eat less and move more. However, this very common condition has turned out to be extremely troublesome, and in some cases even irreversible. METHODS: The interplay between less muscle and more fat tissue is discussed from physiological perspectives with an emphasis on the early years of childhood. RESULTS: It is suggested that the coordinated muscle-fat interactions lead to a fluctuating exchange economy rate. This bodily economic decision, slides between thrift (more fat) and prodigal (more muscle) strategies. The thrift strategy results not only in obesity and less physical activity but also in other maladies which the body is unable to manage. What leads to obesity (less muscle, more fat) might be very difficult to reverse at adulthood, prevention at childhood is thus recommended. CONCLUSION: Early recognition of the ailment (low muscle mass) is crucial. Based on studies demonstrating a 'rivalry' between muscle build-up and height growth at childhood, it is postulated that among the both taller and more obese children the percentage of children with lower muscle mass will be higher. A special, body/muscle-building gymnastics program for children is suggested as a potential early intervention to prevent the ill progress of obesity

    The Cost of Male Aggression and Polygyny in California Sea Lions (Zalophus californianus)

    Get PDF
    In polygynous mating systems, males often increase their fecundity via aggressive defense of mates and/or resources necessary for successful mating. Here we show that both male and female reproductive behavior during the breeding season (June–August) affect female fecundity, a vital rate that is an important determinant of population growth rate and viability. By using 4 years of data on behavior and demography of California sea lions (Zalophus californianus), we found that male behavior and spatial dynamics—aggression and territory size—are significantly related to female fecundity. Higher rates of male aggression and larger territory sizes were associated with lower estimates of female fecundity within the same year. Female aggression was significantly and positively related to fecundity both within the same year as the behavior was measured and in the following year. These results indicate that while male aggression and defense of territories may increase male fecundity, such interactions may cause a reduction in the overall population growth rate by lowering female fecundity. Females may attempt to offset male-related reductions in female fecundity by increasing their own aggression—perhaps to defend pups from incidental injury or mortality. Thus in polygynous mating systems, male aggression may increase male fitness at the cost of female fitness and overall population viability

    Biogeographical Survey Identifies Consistent Alternative Physiological Optima and a Minor Role for Environmental Drivers in Maintaining a Polymorphism

    Get PDF
    The contribution of adaptive mechanisms in maintaining genetic polymorphisms is still debated in many systems. To understand the contribution of selective factors in maintaining polymorphism, we investigated large-scale (>1000 km) geographic variation in morph frequencies and fitness-related physiological traits in the damselfly Nehalennia irene. As fitness-related physiological traits, we investigated investment in immune function (phenoloxidase activity), energy storage and fecundity (abdomen protein and lipid content), and flight muscles (thorax protein content). In the first part of the study, our aim was to identify selective agents maintaining the large-scale spatial variation in morph frequencies. Morph frequencies varied considerably among populations, but, in contrast to expectation, in a geographically unstructured way. Furthermore, frequencies co-varied only weakly with the numerous investigated ecological parameters. This suggests that spatial frequency patterns are driven by stochastic processes, or alternatively, are consequence of highly variable and currently unidentified ecological conditions. In line with this, the investigated ecological parameters did not affect the fitness-related physiological traits differently in both morphs. In the second part of the study, we aimed at identifying trade-offs between fitness-related physiological traits that may contribute to the local maintenance of both colour morphs by defining alternative phenotypic optima, and test the spatial consistency of such trade-off patterns. The female morph with higher levels of phenoloxidase activity had a lower thorax protein content, and vice versa, suggesting a trade-off between investments in immune function and in flight muscles. This physiological trade-off was consistent across the geographical scale studied and supports widespread correlational selection, possibly driven by male harassment, favouring alternative trait combinations in both female morphs

    Transgenerational effects of maternal sexual interactions in seed beetles

    Get PDF
    Mating often bears large costs to females, especially in species with high levels of sexual conflict over mating rates. Given the direct costs to females associated with multiple mating, which include reductions in lifespan and lifetime reproductive success, past research focused on identifying potential indirect benefits (through increases in offspring fitness) that females may accrue. Far less attention has, however, been devoted to understanding how costs of sexual interactions to females may extend across generations. Hence, little is known about the transgenerational implications of variation in mating rates, or the net consequences of maternal sexual activities across generations. Using the seed beetle, Callosobruchus maculatus, a model system for the study of sexual conflict, we investigate the effects of mating with multiple males versus a single male, and tease apart effects due to sexual harassment and those due to mating per se, over three generations. A multigenerational analysis indicated that females that were exposed to ongoing sexual harassment and who also were permitted to mate with multiple males showed no difference in net fitness compared to females that mated just once without ongoing harassment. Intriguingly, however, females that were continually harassed, but permitted to mate just once, suffered a severe decline in net fitness compared to females that were singly (not harassed) or multiply mated (harassed, but potentially gaining benefits via mating with multiple males). Overall, the enhanced fitness in multiply mated compared to harassed females may indicate that multiple mating confers transgenerational benefits. These benefits may counteract, but do not exceed (i.e., we found no difference between singly and multiply mated females), the large transgenerational costs of harassment. Our study highlights the importance of examining transgenerational effects from an inclusive (looking at both indirect benefits but also costs) perspective, and the need to investigate transgenerational effects across several generations if we are to fully understand the consequences of sexual interactions, sexual conflict evolution, and the interplay of sexual conflict and multi-generational costs and benefits
    corecore