296 research outputs found

    ERP evidence suggests executive dysfunction in ecstasy polydrug users

    Get PDF
    Background: Deficits in executive functions such as access to semantic/long-term memory have been shown in ecstasy users in previous research. Equally, there have been many reports of equivocal findings in this area. The current study sought to further investigate behavioural and electro-physiological measures of this executive function in ecstasy users. Method: Twenty ecstasy–polydrug users, 20 non-ecstasy–polydrug users and 20 drug-naïve controls were recruited. Participants completed background questionnaires about their drug use, sleep quality, fluid intelligence and mood state. Each individual also completed a semantic retrieval task whilst 64 channel Electroencephalography (EEG) measures were recorded. Results: Analysis of Variance (ANOVA) revealed no between-group differences in behavioural performance on the task. Mixed ANOVA on event-related potential (ERP) components P2, N2 and P3 revealed significant between-group differences in the N2 component. Subsequent exploratory univariate ANOVAs on the N2 component revealed marginally significant between-group differences, generally showing greater negativity at occipito-parietal electrodes in ecstasy users compared to drug-naïve controls. Despite absence of behavioural differences, differences in N2 magnitude are evidence of abnormal executive functioning in ecstasy–polydrug users

    Acute weight gain, gender, and therapeutic response to antipsychotics in the treatment of patients with schizophrenia

    Get PDF
    BACKGROUND: Previous research indicated that women are more vulnerable than men to adverse psychological consequences of weight gain. Other research has suggested that weight gain experienced during antipsychotic therapy may also psychologically impact women more negatively. This study assessed the impact of acute treatment-emergent weight gain on clinical and functional outcomes of patients with schizophrenia by patient gender and antipsychotic treatment (olanzapine or haloperidol). METHODS: Data were drawn from the acute phase (first 6-weeks) of a double-blind randomized clinical trial of olanzapine versus haloperidol in the treatment of 1296 men and 700 women with schizophrenia-spectrum disorders. The associations between weight change and change in core schizophrenia symptoms, depressive symptoms, and functional status were examined post-hoc for men and women and for each medication group. Core schizophrenia symptoms (positive and negative) were measured with the Brief Psychiatric Rating Scale (BPRS), depressive symptoms with the BPRS Anxiety/Depression Scale and the Montgomery-Asberg Depression Rating Scale, and functional status with the mental and physical component scores on the Medical Outcome Survey-Short Form 36. Statistical analysis included methods that controlled for treatment duration. RESULTS: Weight gain during 6-week treatment with olanzapine and haloperidol was significantly associated with improvements in core schizophrenia symptoms, depressive symptoms, mental functioning, and physical functioning for men and women alike. The conditional probability of clinical response (20% reduction in core schizophrenia symptom), given a clinically significant weight gain (at least 7% of baseline weight), showed that about half of the patients who lost weight responded to treatment, whereas three-quarters of the patients who had a clinically significant weight gain responded to treatment. The positive associations between therapeutic response and weight gain were similar for the olanzapine and haloperidol treatment groups. Improved outcomes were, however, more pronounced for the olanzapine-treated patients, and more olanzapine-treated patients gained weight. CONCLUSIONS: The findings of significant relationships between treatment-emergent weight gain and improvements in clinical and functional status at 6-weeks suggest that patients who have greater treatment-emergent weight gain are more likely to benefit from treatment with olanzapine or haloperidol regardless of gender

    Accretion of Planetary Material onto Host Stars

    Full text link
    Accretion of planetary material onto host stars may occur throughout a star's life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars' main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star's life, during which the details of accretion vary, and the observational evidence for accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Pathogenesis of vestibular schwannoma in ring chromosome 22

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ring chromosome 22 is a rare human constitutional cytogenetic abnormality. Clinical features of neurofibromatosis type 1 and 2 as well as different tumour types have been reported in patients with ring chromosome 22. The pathogenesis of these tumours is not always clear yet.</p> <p>Methods</p> <p>We report on a female patient with a ring chromosome 22 presenting with severe mental retardation, autistic behaviour, café-au-lait macules and facial dysmorphism. Peripheral blood lymphocytes were karyotyped and array CGH was performed on extracted DNA. At the age of 20 years she was diagnosed with a unilateral vestibular schwannoma. Tumour cells were analyzed by karyotyping, array CGH and <it>NF2 </it>mutation analysis.</p> <p>Results</p> <p>Karyotype on peripheral blood lymphocytes revealed a ring chromosome 22 in all analyzed cells. A 1 Mb array CGH experiment on peripheral blood DNA showed a deletion of 5 terminal clones on the long arm of chromosome 22. Genetic analysis of vestibular schwannoma tissue revealed loss of the ring chromosome 22 and a somatic second hit in the <it>NF2 </it>gene on the remaining chromosome 22.</p> <p>Conclusion</p> <p>We conclude that tumours can arise by the combination of loss of the ring chromosome and a pathogenic <it>NF2 </it>mutation on the remaining chromosome 22 in patients with ring chromosome 22. Our findings indicate that patients with a ring 22 should be monitored for NF2-related tumours starting in adolescence.</p

    Age- and gender-specific risk of death after first hospitalization for heart failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hospitalization for heart failure (HF) is associated with high-in-hospital and short- and long-term post discharge mortality. Age and gender are important predictors of mortality in hospitalized HF patients. However, studies assessing short- and long-term risk of death stratified by age and gender are scarce.</p> <p>Methods</p> <p>A nationwide cohort was identified (ICD-9 codes 402, 428) and followed through linkage of national registries. The crude 28-day, 1-year and 5-year mortality was computed by age and gender. Cox regression models were used for each period to study sex differences adjusting for potential confounders (age and comorbidities).</p> <p>Results</p> <p>14,529 men, mean age 74 ± 11 years and 14,524 women, mean age 78 ± 11 years were identified. Mortality risk after admission for HF increased with age and the risk of death was higher among men than women. Hazard ratio's (men versus women and adjusted for age and co-morbidity) were 1.21 (95%CI 1.14 to 1.28), 1.26 (95% CI 1.21 to 1.31), and 1.28 (95%CI 1.24 to 1.31) for 28 days, 1 year and 5 years mortality, respectively.</p> <p>Conclusions</p> <p>This study clearly shows age- and gender differences in short- and long-term risk of death after first hospitalization for HF with men having higher short- and long-term risk of death than women. As our study population includes both men and women from all ages, the estimates we provide maybe a good reflection of 'daily practice' risk of death and therefore be valuable for clinicians and policymakers.</p

    Genetic Analysis of the Individual Contribution to Virulence of the Type III Effector Inventory of Pseudomonas syringae pv. phaseolicola

    Get PDF
    Several reports have recently contributed to determine the effector inventory of the sequenced strain Pseudomonas syringae pv. phaseolicola (Pph) 1448a. However, the contribution to virulence of most of these effectors remains to be established. Genetic analysis of the contribution to virulence of individual P. syringae effectors has been traditionally hindered by the lack of phenotypes of the corresponding knockout mutants, largely attributed to a high degree of functional redundancy within their effector inventories. In support of this notion, effectors from Pseudomonas syringae pv. tomato (Pto) DC3000 have been classified into redundant effector groups (REGs), analysing virulence of polymutants in the model plant Nicotiana benthamiana. However, using competitive index (CI) as a virulence assay, we were able to establish the individual contribution of AvrPto1PtoDC3000 to Pto DC3000 virulence in tomato, its natural host, even though typically, contribution to virulence of AvrPto1 is only shown in strains also lacking AvrPtoB (also called HopAB2), a member of its REG. This report raised the possibility that even effectors targeting the same defence signalling pathway may have an individual contribution to virulence, and pointed out to CI assays as the means to establish such a contribution for individual effectors. In this work, we have analysed the individual contribution to virulence of the majority of previously uncharacterised Pph 1448a effectors, by monitoring the development of disease symptoms and determining the CI of single knockout mutants at different stages of growth within bean, its natural host. Despite their potential functional redundancy, we have found individual contributions to virulence for six out of the fifteen effectors analysed. In addition, we have analysed the functional relationships between effectors displaying individual contribution to virulence, highlighting the diversity that these relationships may present, and the interest of analysing their functions within the context of the infection

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
    corecore