113 research outputs found
Predicting Risky Drinking Outcomes Longitudinally: What Kind of Advance Notice Can We Get?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65954/1/j.1530-0277.2006.00033.x.pd
Small Scattered Fragments Do Not a Dwarf Make: Biological and Archaeological Data Indicate that Prehistoric Inhabitants of Palau Were Normal Sized
Current archaeological evidence from Palau in western Micronesia indicates that the archipelago was settled around 3000β3300 BP by normal sized populations; contrary to recent claims, they did not succumb to insular dwarfism
Site-specific labeling of nucleotides for making RNA for high resolution NMR studies using an E. coli strain disabled in the oxidative pentose phosphate pathway
Escherichia coli (E. coli) is a versatile organism for making nucleotides labeled with stable isotopes (13C, 15N, and/or 2H) for structural and molecular dynamics characterizations. Growth of a mutant E. coli strain deficient in the pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase (K10-1516) on 2-13C-glycerol and 15N-ammonium sulfate in Studier minimal medium enables labeling at sites useful for NMR spectroscopy. However, 13C-sodium formate combined with 13C-2-glycerol in the growth media adds labels to new positions. In the absence of labeled formate, both C5 and C6 positions of the pyrimidine rings are labeled with minimal multiplet splitting due to 1JC5C6 scalar coupling. However, the C2/C8 sites within purine rings and the C1β²/C3β²/C5β² positions within the ribose rings have reduced labeling. Addition of 13C-labeled formate leads to increased labeling at the base C2/C8 and the ribose C1β²/C3β²/C5β² positions; these new specific labels result in two- to three-fold increase in the number of resolved resonances. This use of formate and 15N-ammonium sulfate promises to extend further the utility of these alternate site specific labels to make labeled RNA for downstream biophysical applications such as structural, dynamics and functional studies of interesting biologically relevant RNAs
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Disulfide Bridges Remain Intact while Native Insulin Converts into Amyloid Fibrils
Amyloid fibrils are Ξ²-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR) and Nuclear Magnetic Resonance (NMR) spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin
Unusually Long Palindromes Are Abundant in Mitochondrial Control Regions of Insects and Nematodes
BACKGROUND: Palindromes are known to be involved in a variety of biological processes. In the present investigation we carried out a comprehensive analysis of palindromes in the mitochondrial control regions (CRs) of several animal groups to study their frequency, distribution and architecture to gain insights into the origin of replication of mtDNA. METHODOLOGY/PRINCIPAL FINDINGS: Many species of Arthropoda, Nematoda, Mollusca and Annelida harbor palindromes and inverted repeats (IRs) in their CRs. Lower animals like cnidarians and higher animal groups like chordates are almost devoid of palindromes and IRs. The study revealed that palindrome occurrence is positively correlated with the AT content of CRs, and that IRs are likely to give rise to longer palindromes. CONCLUSIONS/SIGNIFICANCE: The present study attempts to explain possible reasons and gives in silico evidence for absence of palindromes and IRs from CR of vertebrate mtDNA and acquisition and retention of the same in insects. Study of CRs of different animal phyla uncovered unique architecture of this locus, be it high abundance of long palindromes and IRs in CRs of Insecta and Nematoda, or short IRs of 10β20 nucleotides with a spacer region of 12β14 bases in subphylum Chelicerata, or nearly complete of absence of any long palindromes and IRs in Vertebrata, Cnidaria and Echinodermata
Feasibility, design and conduct of a pragmatic randomized controlled trial to reduce overweight and obesity in children: The electronic games to aid motivation to exercise (eGAME) study
<p>Abstract</p> <p>Background</p> <p>Childhood obesity has reached epidemic proportions in developed countries. Sedentary screen-based activities such as video gaming are thought to displace active behaviors and are independently associated with obesity. Active video games, where players physically interact with images onscreen, may have utility as a novel intervention to increase physical activity and improve body composition in children. The aim of the Electronic Games to Aid Motivation to Exercise (eGAME) study is to determine the effects of an active video game intervention over 6 months on: body mass index (BMI), percent body fat, waist circumference, cardio-respiratory fitness, and physical activity levels in overweight children.</p> <p>Methods/Design</p> <p>Three hundred and thirty participants aged 10β14 years will be randomized to receive either an active video game upgrade package or to a control group (no intervention).</p> <p>Discussion</p> <p>An overview of the eGAME study is presented, providing an example of a large, pragmatic randomized controlled trial in a community setting. Reflection is offered on key issues encountered during the course of the study. In particular, investigation into the feasibility of the proposed intervention, as well as robust testing of proposed study procedures is a critical step prior to implementation of a large-scale trial.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry ACTRN12607000632493</p
Unc-51/ATG1 Controls Axonal and Dendritic Development via Kinesin-Mediated Vesicle Transport in the Drosophila Brain
Background:Members of the evolutionary conserved Ser/Thr kinase Unc-51 family are key regulatory proteins that control neural development in both vertebrates and invertebrates. Previous studies have suggested diverse functions for the Unc-51 protein, including axonal elongation, growth cone guidance, and synaptic vesicle transport.Methodology/Principal Findings:In this work, we have investigated the functional significance of Unc-51-mediated vesicle transport in the development of complex brain structures in Drosophila. We show that Unc-51 preferentially accumulates in newly elongating axons of the mushroom body, a center of olfactory learning in flies. Mutations in unc-51 cause disintegration of the core of the developing mushroom body, with mislocalization of Fasciclin II (Fas II), an IgG-family cell adhesion molecule important for axonal guidance and fasciculation. In unc-51 mutants, Fas II accumulates in the cell bodies, calyx, and the proximal peduncle. Furthermore, we show that mutations in unc-51 cause aberrant overshooting of dendrites in the mushroom body and the antennal lobe. Loss of unc-51 function leads to marked accumulation of Rab5 and Golgi components, whereas the localization of dendrite-specific proteins, such as Down syndrome cell adhesion molecule (DSCAM) and No distributive disjunction (Nod), remains unaltered. Genetic analyses of kinesin light chain (Klc) and unc-51 double heterozygotes suggest the importance of kinesin-mediated membrane transport for axonal and dendritic development. Moreover, our data demonstrate that loss of Klc activity causes similar axonal and dendritic defects in mushroom body neurons, recapitulating the salient feature of the developmental abnormalities caused by unc-51 mutations.Conclusions/Significance:Unc-51 plays pivotal roles in the axonal and dendritic development of the Drosophila brain. Unc-51-mediated membrane vesicle transport is important in targeted localization of guidance molecules and organelles that regulate elongation and compartmentalization of developing neurons
- β¦