17 research outputs found

    Comparison Of Generic And Lung Cancer-Specific Quality Of Life Instruments For Predictive Ability Of Survival In Patients With Advanced Lung Cancer

    Get PDF
    Background Our purpose is to examine the relationship of Health related quality of life measured by EORTC QLQc30, QLQ-LC13; FACT-L, LCSS, Eq5D) with survival in advanced lung cancer patients. A total of 299 Lung Cancer (LC) patients were, included in this national multicenter Project entitled of “the LC Quality of Life Project (AKAYAK). Baseline scores were analyzed by using Cox’s proportional hazard regression to identify factors that influenced survival. Univariate and multivariate models were run for each of the scales included in the study. Results Mean and median survival were 12.5 and 8.0 months respectively. Clinical stage (as TNM), comorbidity; symptom scales of fatigue, insomnia, appetit loss and constipation were associated with survival after adjustment for age and sex. Global, physical and role functioning scales of QLQc30; physical and functional scales of LCS and TOI of the FACT-L was also associated with survival. Mobility and Usual activities dimensions of the Eq5D; Physical functioning and the constipation symptom scale of the QLQ-c30; and LCS and TOI scores of the FACT-L remained statistically significant after adjustment. LC13 and LCSS scales were not predictors of survival. Conclusions HRQOL serves as an additional predictive factor for survival that supplements traditional clinical factors. Besides the strong predictive ability of ECOG on survival, FACT-L and the Eq5D are the most promising HRQOL instruments for this purpose.PubMedWoSScopu

    A case-control study of physical activity patterns and risk of non-fatal myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interactive effects of different types of physical activity on cardiovascular disease (CVD) risk have not been fully considered in previous studies. We aimed to identify physical activity patterns that take into account combinations of physical activities and examine the association between derived physical activity patterns and risk of acute myocardial infarction (AMI).</p> <p>Methods</p> <p>We examined the relationship between physical activity patterns, identified by principal component analysis (PCA), and AMI risk in a case-control study of myocardial infarction in Costa Rica (N=4172), 1994-2004. The component scores derived from PCA and total METS were used in natural cubic spline models to assess the association between physical activity and AMI risk.</p> <p>Results</p> <p>Four physical activity patterns were retained from PCA that were characterized as the rest/sleep, agricultural job, light indoor activity, and manual labor job patterns. The light indoor activity and rest/sleep patterns showed an inverse linear relation (<it>P</it> for linearity=0.001) and a U-shaped association (<it>P</it> for non-linearity=0.03) with AMI risk, respectively. There was an inverse association between total activity-related energy expenditure and AMI risk but it reached a plateau at high levels of physical activity (<it>P</it> for non-linearity=0.01).</p> <p>Conclusions</p> <p>These data suggest that a light indoor activity pattern is associated with reduced AMI risk. PCA provides a new approach to investigate the relationship between physical activity and CVD risk.</p

    Biomechanical evaluation of a new fixation device for the thoracic spine

    No full text
    The technology used in surgery for spinal deformity has progressed rapidly in recent years. Commonly used fixation techniques may include monofilament wires, sublaminar wires and cables, and pedicle screws. Unfortunately, neurological complications can occur with all of these, compromising the patients’ health and quality of life. Recently, an alternative fixation technique using a metal clamp and polyester belt was developed to replace hooks and sublaminar wiring in scoliosis surgery. The goal of this study was to compare the pull-out strength of this new construct with sublaminar wiring, laminar hooks and pedicle screws. Forty thoracic vertebrae from five fresh frozen human thoracic spines (T5–12) were divided into five groups (8 per group), such that BMD values, pedicle diameter, and vertebral levels were equally distributed. They were then potted in polymethylmethacrylate and anchored with metal screws and polyethylene bands. One of five fixation methods was applied to the right side of the vertebra in each group: Pedicle screw, sublaminar belt with clamp, figure-8 belt with clamp, sublaminar wire, or laminar hook. Pull-out strength was then assessed using a custom jig in a servohydraulic tester. The mean failure load of the pedicle screw group was significantly larger than that of the figure-8 clamp (P = 0.001), sublaminar belt (0.0172), and sublaminar wire groups (P = 0.04) with no significant difference in pull-out strength between the latter three constructs. The most common mode of failure was the fracture of the pedicle. BMD was significantly correlated with failure load only in the figure-8 clamp and pedicle screw constructs. Only the pedicle screw had a statistically significant higher failure load than the sublaminar clamp. The sublaminar method of applying the belt and clamp device was superior to the figure-8 method. The sublaminar belt and clamp construct compared favorably to the traditional methods of sublaminar wires and laminar hooks, and should be considered as an alternative fixation device in the thoracic spine
    corecore