28 research outputs found

    Benthic macro invertebrate communities of high conservation value Thirsty and Little Thirsty Lagoons, Cape Barren Island, Tasmania

    Get PDF
    This study represents the first account of the invertebrate ecology and biology of the estuarine Thirsty and Little Thirsty coastal lagoons on Cape Barren Island, Tasmania. Due to its remoteness, Thirsty Lagoon is one of the most pristine coastal lagoon systems in Tasmania and is, therefore, an important reference point against which to measure future human impacts in coastal lagoons in the Bass Strait islands, and in south-eastern Australia generally. The system comprises two interconnected lagoons. The lower of the two lagoons, Thirsty Lagoon, is connected to the sea by an open channel allowing tidal exchange. This exchange maintains salinities in the lower reaches at or near seawater concentrations. As the basin is shallow, rates of evaporation are high, particularly in summer, elevating salinity levels and resulting in periodic drying-out of sections of the lagoonal system. At the time of our visit in late summer, freshwater input from feeder streams was minimal and there was little tidal exchange between Thirsty and, the upper lagoon, Little Thirsty. As a consequence salinities in Little Thirsty were very high (ca. 60). These coastal lagoons, and one other sampled, supported a low diversity of invertebrate fauna that is typical of coastal lagoons elsewhere in Tasmania. The fauna included marine polychaete worms, molluscs, small crustaceans and high densities of a dipteran larvae in Little Thirsty Lagoon. The fauna found in the lower reaches of Thirsty Lagoon include a number of invertebrate species that are typically marine in origin, while the upper reaches were dominated by species that commonly occur in estuaries elsewhere, albeit in low salinity or brackish waters. Despite very high salinities and periodic evaporation, Little Thirsty and Thirsty lagoons supported high densities of invertebrates that may constitute an important food source for visiting migratory and wading birds

    Invasions and Extinctions Reshape Coastal Marine Food Webs

    Get PDF
    The biodiversity of ecosystems worldwide is changing because of species loss due to human-caused extinctions and species gain through intentional and accidental introductions. Here we show that the combined effect of these two processes is altering the trophic structure of food webs in coastal marine systems. This is because most extinctions (∼70%) occur at high trophic levels (top predators and other carnivores), while most invasions are by species from lower trophic levels (70% macroplanktivores, deposit feeders, and detritivores). These opposing changes thus alter the shape of marine food webs from a trophic pyramid capped by a diverse array of predators and consumers to a shorter, squatter configuration dominated by filter feeders and scavengers. The consequences of the simultaneous loss of diversity at top trophic levels and gain at lower trophic levels is largely unknown. However, current research suggests that a better understanding of how such simultaneous changes in diversity can impact ecosystem function will be required to manage coastal ecosystems and forecast future changes

    Sedimentary Environment Influences the Effect of an Infaunal Suspension Feeding Bivalve on Estuarine Ecosystem Function

    Get PDF
    The suspension feeding bivalve Austrovenus stutchburyi is a key species on intertidal sandflats in New Zealand, affecting the appearance and functioning of these systems, but is susceptible to several environmental stressors including sedimentation. Previous studies into the effect of this species on ecosystem function have been restricted in space and time, limiting our ability to infer the effect of habitat change on functioning. We examined the effect of Austrovenus on benthic primary production and nutrient dynamics at two sites, one sandy, the other composed of muddy-sand to determine whether sedimentary environment alters this key species' role. At each site we established large (16 m2) plots of two types, Austrovenus addition and removal. In winter and summer we deployed light and dark benthic chambers to quantify oxygen and nutrient fluxes and measured sediment denitrification enzyme activity to assess denitrification potential. Rates of gross primary production (GPP) and ammonium uptake were significantly increased when Austrovenus was added, relative to removed, at the sandy site (GPP, 1.5 times greater in winter and summer; ammonium uptake, 8 times greater in summer; 3-factor analysis of variance (ANOVA), p<0.05). Denitrification potential was also elevated in Austrovenus addition plots at the sandy site in summer (by 1.6 times, p<0.1). In contrast, there was no effect of Austrovenus treatment on any of these variables at the muddy-sand site, and overall rates tended to be lower at the muddy-sand site, relative to the sandy site (e.g. GPP was 2.1 to 3.4 times lower in winter and summer, respectively, p<0.001). Our results suggest that the positive effects of Austrovenus on system productivity and denitrification potential is limited at a muddy-sand site compared to a sandy site, and reveal the importance of considering sedimentary environment when examining the effect of key species on ecosystem function

    Accommodating Dynamic Oceanographic Processes and Pelagic Biodiversity in Marine Conservation Planning

    Get PDF
    Pelagic ecosystems support a significant and vital component of the ocean's productivity and biodiversity. They are also heavily exploited and, as a result, are the focus of numerous spatial planning initiatives. Over the past decade, there has been increasing enthusiasm for protected areas as a tool for pelagic conservation, however, few have been implemented. Here we demonstrate an approach to plan protected areas that address the physical and biological dynamics typical of the pelagic realm. Specifically, we provide an example of an approach to planning protected areas that integrates pelagic and benthic conservation in the southern Benguela and Agulhas Bank ecosystems off South Africa. Our aim was to represent species of importance to fisheries and species of conservation concern within protected areas. In addition to representation, we ensured that protected areas were designed to consider pelagic dynamics, characterized from time-series data on key oceanographic processes, together with data on the abundance of small pelagic fishes. We found that, to have the highest likelihood of reaching conservation targets, protected area selection should be based on time-specific data rather than data averaged across time. More generally, we argue that innovative methods are needed to conserve ephemeral and dynamic pelagic biodiversity

    Environmental forcing of phytoplankton in a Mediterranean estuary (Guadiana Estuary, southwestern Iberia): a decadal of anthropogenic and climatic influences

    No full text
    Phytoplankton seasonal and interannual variability in theGuadiana upper estuarywas analyzed during 1996–2005, a period that encompassed a climatic controlled reduction in river flow that was superimposed on the construction of a dam. Phytoplankton seasonal patterns revealed an alternation between a persistent light limitation and episodic nutrient limitation. Phytoplankton succession, with early spring diatom blooms and summer–early fall cyanobacterial blooms, was apparently driven by changes in nutrients, water temperature, and turbulence, clearly demonstrating the role of river flow and climate variability. Light intensity in the mixed layer was a prevalent driver of phytoplankton interannual variability, and the increased turbidity caused by the Alqueva dam construction was linked to pronounced decreases in chlorophyll a concentration, particularly at the start and end of the phytoplankton growing period. Decreases in annual maximum and average abundances of diatoms, green algae, and cyanobacteria were also detected. Furthermore, chlorophyll a decreases after dam filling and a decrease in turbidity may point to a shift from light limitation towards a more nutrient-limited mode in the near future
    corecore