222 research outputs found
Mega-regional trade Agreements: Costly distractions for developing countries?
This paper examines the relationship between mega-regional trade Agreements and diet-related health given that such Agreements aim to liberalize “substantially all trade and investment” that could potentially impact on health through tariff elimination and stronger intellectual property commitments in partner countries. We analyse two interlinked policy concerns: first, how tariff reduction/elimination under mega-regional Agreements impact on the production of sugar? Second, how mega-regional Agreements with Trade-Related Aspects of Intellectual Property Rights (TRIPS)-style and TRIPS-plus commitments modify intellectual property rules among partner countries and impact on developing countries’ access to life-saving drugs and medicines? Using a dynamic Global Trade Analysis Project model, we find there are significant health consequences of trade commitments undertaken by developing countries with potential detrimental health effect on populations such that first, higher production of sugar alters consumption trends. Second, despite stricter intellectual property rules, which result in net global gains, developing countries suffer from the regulatory chill effect
Anomalous critical fields in quantum critical superconductors.
Fluctuations around an antiferromagnetic quantum critical point (QCP) are believed to lead to unconventional superconductivity and in some cases to high-temperature superconductivity. However, the exact mechanism by which this occurs remains poorly understood. The iron-pnictide superconductor BaFe2(As(1-x)P(x))2 is perhaps the clearest example to date of a high-temperature quantum critical superconductor, and so it is a particularly suitable system to study how the quantum critical fluctuations affect the superconducting state. Here we show that the proximity of the QCP yields unexpected anomalies in the superconducting critical fields. We find that both the lower and upper critical fields do not follow the behaviour, predicted by conventional theory, resulting from the observed mass enhancement near the QCP. Our results imply that the energy of superconducting vortices is enhanced, possibly due to a microscopic mixing of antiferromagnetism and superconductivity, suggesting that a highly unusual vortex state is realized in quantum critical superconductors.We thank Igor Mazin and Georg Knebel for useful discussions,
and A. M. Adamska for experimental help. This work was supported
by the Engineering and Physical Sciences Research Council
(Grant No. EP/H025855/1), EuroMagNET II under the EU
Contract No. 228043, National Physical Laboratory Strategic
Research Programme, and KAKENHI from JSPS.This is the final published version. It first appeared at http://www.nature.com/ncomms/2014/141205/ncomms6679/full/ncomms6679.html
Oldest pathology in a tetrapod bone illuminates the origin of terrestrial vertebrates
The origin of terrestrial tetrapods was a key event in vertebrate evolution, yet how and when it occurred remains obscure, due to scarce fossil evidence. Here, we show that the study of palaeopathologies, such as broken and healed bones, can help elucidate poorly understood behavioural transitions such as this. Using high-resolution finite element analysis, we demonstrate that the oldest known broken tetrapod bone, a radius of the primitive stem tetrapod Ossinodus pueri from the mid-Viséan (333 million years ago) of Australia, fractured under a high-force, impact-type loading scenario. The nature of the fracture suggests that it most plausibly occurred during a fall on land. Augmenting this are new osteological observations, including a preferred directionality to the trabecular architecture of cancellous bone. Together, these results suggest that Ossinodus, one of the first large (>2m length) tetrapods, spent a significant proportion of its life on land. Our findings have important implications for understanding the temporal, biogeographical and physiological contexts under which terrestriality in vertebrates evolved. They push the date for the origin of terrestrial tetrapods further back into the Carboniferous by at least two million years. Moreover, they raise the possibility that terrestriality in vertebrates first evolved in large tetrapods in Gondwana rather than in small European forms, warranting a re-evaluation of this important evolutionary event
Radial shortening following a fracture of the proximal radius: Degree of shortening and short-term outcome in 22 proximal radial fractures
Background and purpose: The Essex-Lopresti lesion is thought to be rare, with a varying degree of disruption to forearm stability probable. We describe the range of radial shortening that occurs following a fracture of the proximal radius, as well as the short-term outcome in these patients. Patients and methods Over an 18-month period, we prospectively assessed all patients with a radiographically confirmed proximal radial fracture. Patients noted to have ipsilateral wrist pain at initial presentation underwent bilateral radiography to determine whether there was disruption of the distal radio-ulnar joint suggestive of an Essex-Lopresti lesion. Outcome was assessed after a mean of 6 (1.5-12) months using clinical and radiographic results, including the Mayo elbow score (MES) and the short musculoskeletal function assessment (SMFA) questionnaire. One patient with a Mason type-I fracture was lost to follow-up after initial presentation. Results 60 patients had ipsilateral wrist pain at the initial assessment of 237 proximal radial fractures. Radial shortening of ≥ 2mm (range: 2-4mm) was seen in 22 patients (mean age 48 (19-79) years, 16 females). The most frequent mechanism of injury was a fall from standing height (10/22). 21 fractures were classified as being Mason type-I or type-II, all of which were managed nonoperatively. One Mason type-III fracture underwent acute radial head replacement. Functional outcome was assessed in 21 patients. We found an excellent or good MES in 18 of the 20 patients with a Mason type-I or type-II injury. Interpretation The incidence of the Essex-Lopresti lesion type is possibly under-reported as there is a spectrum of injuries, and subtle disruptions often go unidentified. A full assessment of all patients with a proximal radial fracture is required in order to identify these injuries, and the index of suspicion is raised as the complexity of the fracture increases.</p
An Interspecific Nicotiana Hybrid as a Useful and Cost-Effective Platform for Production of Animal Vaccines
The use of transgenic plants to produce novel products has great biotechnological potential as the relatively inexpensive inputs of light, water, and nutrients are utilised in return for potentially valuable bioactive metabolites, diagnostic proteins and vaccines. Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines of importance for both animals and humans. Vaccine purification is generally regarded as being integral to the preparation of safe and effective vaccines for use in humans. However, the use of crude plant extracts for animal immunisation may enable plant-made vaccines to become a cost-effective and efficacious approach to safely immunise large numbers of farm animals against diseases such as avian influenza. Since the technology associated with genetic transformation and large-scale propagation is very well established in Nicotiana, the genus has attributes well-suited for the production of plant-made vaccines. However the presence of potentially toxic alkaloids in Nicotiana extracts impedes their use as crude vaccine preparations. In the current study we describe a Nicotiana tabacum and N. glauca hybrid that expresses the HA glycoprotein of influenza A in its leaves but does not synthesize alkaloids. We demonstrate that injection with crude leaf extracts from these interspecific hybrid plants is a safe and effective approach for immunising mice. Moreover, this antigen-producing alkaloid-free, transgenic interspecific hybrid is vigorous, with a high capacity for vegetative shoot regeneration after harvesting. These plants are easily propagated by vegetative cuttings and have the added benefit of not producing viable pollen, thus reducing potential problems associated with bio-containment. Hence, these Nicotiana hybrids provide an advantageous production platform for partially purified, plant-made vaccines which may be particularly well suited for use in veterinary immunization programs
Functional kinds: a skeptical look
The functionalist approach to kinds has suffered recently due to its association with law-based approaches to induction and explanation. Philosophers of science increasingly view nomological approaches as inappropriate for the special sciences like psychology and biology, which has led to a surge of interest in approaches to natural kinds that are more obviously compatible with mechanistic and model-based methods, especially homeostatic property cluster theory. But can the functionalist approach to kinds be weaned off its dependency on laws? Dan Weiskopf has recently offered a reboot of the functionalist program by replacing its nomological commitments with a model-based approach more closely derived from practice in psychology. Roughly, Weiskopf holds that the natural kinds of psychology will be the functional properties that feature in many empirically successful cognitive models, and that those properties need not be localized to parts of an underlying mechanism.
I here skeptically examine the three modeling practices that Weiskopf thinks introduce such non-localizable properties: fictionalization, reification, and functional abstraction. In each case, I argue that recognizing functional properties introduced by these practices as autonomous kinds comes at clear cost to those explanations’ counterfactual explanatory power. At each step, a tempting functionalist response is parochialism: to hold that the false or omitted counterfactuals fall outside the modeler’s explanatory aims, and so should not be counted against functional kinds. I conclude by noting the dangers this attitude poses to scientific disagreement, inviting functionalists to better articulate how the individuation conditions for functional kinds might outstrip the perspective of a single modeler
Metaphors We Think With: The Role of Metaphor in Reasoning
The way we talk about complex and abstract ideas is suffused with metaphor. In five experiments, we explore how these metaphors influence the way that we reason about complex issues and forage for further information about them. We find that even the subtlest instantiation of a metaphor (via a single word) can have a powerful influence over how people attempt to solve social problems like crime and how they gather information to make “well-informed” decisions. Interestingly, we find that the influence of the metaphorical framing effect is covert: people do not recognize metaphors as influential in their decisions; instead they point to more “substantive” (often numerical) information as the motivation for their problem-solving decision. Metaphors in language appear to instantiate frame-consistent knowledge structures and invite structurally consistent inferences. Far from being mere rhetorical flourishes, metaphors have profound influences on how we conceptualize and act with respect to important societal issues. We find that exposure to even a single metaphor can induce substantial differences in opinion about how to solve social problems: differences that are larger, for example, than pre-existing differences in opinion between Democrats and Republicans
Cranial biomechanics in basal urodeles: the Siberian salamander (Salamandrella keyserlingii) and its evolutionary and developmental implications
Developmental changes in salamander skulls, before and after metamorphosis, afect the feeding capabilities of these animals. How changes in cranial morphology and tissue properties afect the function of the skull are key to decipher the early evolutionary history of the crown-group of salamanders. Here, 3D cranial biomechanics of the adult Salamandrella keyserlingii were analyzed under diferent tissue properties and ossifcation sequences of the cranial skeleton. This helped unravel that: (a) Mechanical properties of tissues (as bone, cartilage or connective tissue) imply a consensus between the stifness required to perform a function versus the fxation (and displacement) required with the surrounding skeletal elements. (b) Changes on the ossifcation pattern, producing fontanelles as a result of bone loss or failure to ossify, represent a trend toward simplifcation potentially helping to distribute stress through the skull, but may also imply a major destabilization of the skull. (c) Bone loss may be originated due to biomechanical optimization and potential reduction of developmental costs. (d) Hynobiids are excellent models for biomechanical reconstruction of extinct early urodeles
Localization of telomeres and telomere-associated proteins in telomerase-negative Saccharomyces cerevisiae
Cells lacking telomerase cannot maintain their telomeres and undergo a telomere erosion phase leading to senescence and crisis in which most cells become nonviable. On rare occasions survivors emerge from these cultures that maintain their telomeres in alternative ways. The movement of five marked telomeres in Saccharomyces cerevisiae was followed in wild-type cells and through erosion, senescence/crisis and eventual survival in telomerase-negative (est2::HYG) yeast cells. It was found that during erosion, movements of telomeres in est2::HYG cells were indistinguishable from wild-type telomere movements. At senescence/crisis, however, most cells were in G2 arrest and the nucleus and telomeres traversed back and forth across the bud neck, presumably until cell death. Type I survivors, using subtelomeric Y′ amplification for telomere maintenance, continued to show this aberrant telomere movement. However, Type II survivors, maintaining telomeres by a sudden elongation of the telomere repeats, became indistinguishable from wild-type cells, consistent with growth properties of the two types of survivors. When telomere-associated proteins Sir2p, Sir3p and Rap1p were tagged, the same general trend was seen—Type I survivors retained the senescence/crisis state of protein localization, while Type II survivors were restored to wild type
- …