4,295 research outputs found

    Rotation of electromagnetic fields and the nature of optical angular momentum

    Get PDF
    The association of spin and orbital angular momenta of light with its polarization and helical phase fronts is now well established. The problems in linking this with electromagnetic theory, as expressed in Maxwell's equations, are rather less well known. We present a simple analysis of the problems involved in defining spin and orbital angular momenta for electromagnetic fields and discuss some of the remaining challenges. Crucial to our investigation is the duplex symmetry between the electric and magnetic fields

    Establishing a monitoring programme for the Allt a’Mharcaidh river restoration project: Monitoring sites and initial surveys

    Get PDF
    The Allt a’Mharcaidh is a stream located on the western side of the Cairngorm Mountains, Scotland. The catchment rises to 1111m above sea level (ECN, 2015) and drains via the River Feshie to the River Spey. Although originally naturally meandering, a stream section of approximately 1150m was artificially straightened in the early1800s (Henderson, 2014) to power saw-mills on the River Feshie and to ease the floating of timber downstream. Despite changes in ownership and catchment land-use over the intervening two centuries, this section of the Mharcaidh has remained straightened. In 2014, a restoration programme for the site was initiated with several objectives (Henderson, 2014) including: 1. enhancing sediment transport to improve the morphology of the straightened channel; 2. improving the stream’s connection with the flood plain; 3. creating erosion and deposition features to improve stream habitat. This was implemented through the addition of woody debris along the stream and the (re-)opening of sediment sources to allow for gravel injection. In addition, riparian tree planting has been undertaken along the course of the straightened section (Spey Fishery Board, 2014). In October 2015, a programme of monitoring at the Allt a’Mharcaidh was established by UCL MSc Aquatic Science students to ascertain changes in stream morphology and substrate at a location where woody debris had recently been introduced. A second ‘control’ section, with no added debris, was later established a few hundred metres upstream. The aim of this monitoring programme is to develop a long-term data-set of morphological changes during MSc field classes undertaken annually in October. This document describes the initial condition of the ‘experimental’ and ‘control’ sampling stretches of the Mharcaidh at the start of this programme as a base-line against which to assess any future change

    A 160-Gb/s OTDM demultiplexer based on parametric wavelength exchange

    Get PDF
    Parametric wavelength exchange (PWE) has been demonstrated as a versatile device in providing different functionalities. In this paper, we will concentrate, numerically and experimentally, on one of these functionalities, namely, all-optical time demultiplexing of 160-Gb/s return-to-zero (RZ) signals based on a pulsed-pump PWE in a 400 m highly nonlinear dispersion-shifted fiber. Experimental results show power penalties < 2.7 dB at bit-error rate of 10-9 for all demultiplexed 10-Gb/s RZ signals. We also derive theoretical expressions for the conversion/residual efficiencies and investigate the impact of pump pulse width and phase mismatch on these efficiencies. Furthermore, the impacts of pulsed-pump wavelength and power level on the characteristics of the switching window are investigated numerically. As a result, the demultiplexer can be easily upgraded to an add-drop multiplexer because of the complete exchange nature of PWE, which is justified by the surviving channels' waveform performance. © 2009 IEEE.published_or_final_versio

    Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny

    Get PDF
    Phylogenies of mammals based on morphological data continue to show several major areas of conflict with the current consensus view of their relationships, which is based largely on molecular data. This raises doubts as to whether current morphological character sets are able to accurately resolve mammal relationships. We tested this under a hypothetical ‘best case scenario’ by using ancestral state reconstruction (under both maximum parsimony and maximum likelihood) to infer the morphologies of fossil ancestors for all clades present in a recent comprehensive DNA sequencebased phylogeny of mammals, and then seeing what effect the subsequent inclusion of these predicted ancestors had on unconstrained phylogenetic analyses of morphological data. We found that this resulted in topologies that are highly congruent with the current consensus phylogeny, at least when the predicted ancestors are assumed to be well preserved and densely sampled. Most strikingly, several analyses recovered the monophyly of clades that have never been found in previous morphology-only studies, such as Afrotheria and Laurasiatheria. Our results suggest that, at least in principle, improvements in the fossil record—specifically the discovery of fossil taxa that preserve the ancestral or near-ancestral morphologies of the nodes in the current consensus—may be sufficient to largely reconcile morphological and molecular estimates of mammal phylogeny, even using current morphological character set

    Are Healthcare Choices Predictable? The Impact of Discrete Choice Experiment Designs and Models

    Get PDF
    © 2019 ISPOR–The Professional Society for Health Economics and Outcomes Research Background: Lack of evidence about the external validity of discrete choice experiments (DCEs) is one of the barriers that inhibit greater use of DCEs in healthcare decision making. Objectives: To determine whether the number of alternatives in a DCE choice task should reflect the actual decision context, and how complex the choice model needs to be to be able to predict real-world healthcare choices. Methods: Six DCEs were used, which varied in (1) medical condition (involving choices for influenza vaccination or colorectal cancer screening) and (2) the number of alternatives per choice task. For each medical condition, 1200 respondents were randomized to one of the DCE formats. The data were analyzed in a systematic way using random-utility-maximization choice processes. Results: Irrespective of the number of alternatives per choice task, the choice for influenza vaccination and colorectal cancer screening was correctly predicted by DCE at an aggregate level, if scale and preference heterogeneity were taken into account. At an individual level, 3 alternatives per choice task and the use of a heteroskedastic error component model plus observed preference heterogeneity seemed to be most promising (correctly predicting >93% of choices). Conclusions: Our study shows that DCEs are able to predict choices—mimicking real-world decisions—if at least scale and preference heterogeneity are taken into account. Patient characteristics (eg, numeracy, decision-making style, and general attitude for and experience with the health intervention) seem to play a crucial role. Further research is needed to determine whether this result remains in other contexts

    Measuring vertebrate telomeres: applications and limitations

    Get PDF
    Telomeres are short tandem repeated sequences of DNA found at the ends of eukaryotic chromosomes that function in stabilizing chromosomal end integrity. In vivo studies of somatic tissue of mammals and birds have shown a correlation between telomere length and organismal age within species, and correlations between telomere shortening rate and lifespan among species. This result presents the tantalizing possibility that telomere length could be used to provide much needed information on age, ageing and survival in natural populations where longitudinal studies are lacking. Here we review methods available for measuring telomere length and discuss the potential uses and limitations of telomeres as age and ageing estimators in the fields of vertebrate ecology, evolution and conservation

    Automation in human-machine networks: how increasing machine agency affects human agency

    Get PDF
    © 2018, Springer International Publishing AG. Efficient human-machine networks require productive interaction between human and machine actors. In this study, we address how a strengthening of machine agency, for example through increasing levels of automation, affect the human actors of the networks. Findings from case studies within air traffic management, emergency management, and crowd evacuation are presented, shedding light on how automation may strengthen the agency of human actors in the network through responsibility sharing and task allocation, and serve as a needed prerequisite of innovation and change

    Evoked potentials in the Atlantic cod following putatively innocuous and putatively noxious electrical stimulation: a minimally invasive approach

    Get PDF
    Aspects of peripheral and central nociception have previously been studied through recording of somatosensory evoked potentials (SEPs) to putative noxious stimuli in specific brain regions in a few freshwater fish species. In the present study, we describe a novel, minimally invasive method for recording SEPs from the central nervous system of the Atlantic cod (Gadus morhua). Cutaneous electric stimulation of the tail in 15 fish elicited SEPs at all stimulus intensities (2, 5, 10 and 20 mA) with quantitative properties corresponding to stimulus intensity. In contrast to previous fish studies, the methodological approach used in Atlantic cod in the current study uncovered a number of additional responses that could originate from multiple brain regions. Several of these responses were specific to stimulation at the highest stimulus intensities, possibly representing qualitative differences in central processing between somatosensory and nociceptive stimuli

    Caring for the patient, caring for the record: an ethnographic study of 'back office' work in upholding quality of care in general practice

    Get PDF
    © 2015 Swinglehurst and Greenhalgh; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Additional file 1: Box 1. Field notes on summarising (Clover Surgery). Box 2. Extract of document prepared for GPs by summarisers at Clover Surgery. Box 3. Fieldnotes on coding incoming post, Clover (original notes edited for brevity).This work was funded by a research grant from the UK Medical Research Council (Healthcare Electronic Records in Organisations 07/133) and a National Institute of Health Research doctoral fellowship award for DS (RDA/03/07/076). The funders were not involved in the selection or analysis of data nor did they make any contribution to the content of the final manuscript

    Deconvolution of Serum Cortisol Levels by Using Compressed Sensing

    Get PDF
    The pulsatile release of cortisol from the adrenal glands is controlled by a hierarchical system that involves corticotropin releasing hormone (CRH) from the hypothalamus, adrenocorticotropin hormone (ACTH) from the pituitary, and cortisol from the adrenal glands. Determining the number, timing, and amplitude of the cortisol secretory events and recovering the infusion and clearance rates from serial measurements of serum cortisol levels is a challenging problem. Despite many years of work on this problem, a complete satisfactory solution has been elusive. We formulate this question as a non-convex optimization problem, and solve it using a coordinate descent algorithm that has a principled combination of (i) compressed sensing for recovering the amplitude and timing of the secretory events, and (ii) generalized cross validation for choosing the regularization parameter. Using only the observed serum cortisol levels, we model cortisol secretion from the adrenal glands using a second-order linear differential equation with pulsatile inputs that represent cortisol pulses released in response to pulses of ACTH. Using our algorithm and the assumption that the number of pulses is between 15 to 22 pulses over 24 hours, we successfully deconvolve both simulated datasets and actual 24-hr serum cortisol datasets sampled every 10 minutes from 10 healthy women. Assuming a one-minute resolution for the secretory events, we obtain physiologically plausible timings and amplitudes of each cortisol secretory event with R[superscript 2] above 0.92. Identification of the amplitude and timing of pulsatile hormone release allows (i) quantifying of normal and abnormal secretion patterns towards the goal of understanding pathological neuroendocrine states, and (ii) potentially designing optimal approaches for treating hormonal disorders.National Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Institutes of Health (U.S.) (NIH DP1 OD003646)National Science Foundation (U.S.) (0836720)National Science Foundation (U.S.). Office of Emerging Frontiers in Research and Innovation (EFRI-0735956
    corecore