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Background: Lack of evidence about the external validity of discrete choice experiments (DCEs) is one of the barriers that
inhibit greater use of DCEs in healthcare decision making.

Objectives: To determine whether the number of alternatives in a DCE choice task should reflect the actual decision context,
and how complex the choice model needs to be to be able to predict real-world healthcare choices.

Methods: Six DCEs were used, which varied in (1) medical condition (involving choices for influenza vaccination or colorectal
cancer screening) and (2) the number of alternatives per choice task. For each medical condition, 1200 respondents were
randomized to one of the DCE formats. The data were analyzed in a systematic way using random-utility-maximization
choice processes.

Results: Irrespective of the number of alternatives per choice task, the choice for influenza vaccination and colorectal cancer
screening was correctly predicted by DCE at an aggregate level, if scale and preference heterogeneity were taken into account.
At an individual level, 3 alternatives per choice task and the use of a heteroskedastic error component model plus observed
preference heterogeneity seemed to be most promising (correctly predicting .93% of choices).

Conclusions: Our study shows that DCEs are able to predict choices—mimicking real-world decisions—if at least scale and
preference heterogeneity are taken into account. Patient characteristics (eg, numeracy, decision-making style, and general
attitude for and experience with the health intervention) seem to play a crucial role. Further research is needed to
determine whether this result remains in other contexts.

Keywords: discrete choice experiment, external validity, healthcare utilization, stated preferences.
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Introduction

The discrete choice experiment (DCE) technique, originating
from mathematical psychology,1,2 has been introduced in health
economics to elicit preferences for health and healthcare.3 The
technique is mainstream in marketing, transport, and environ-
mental economics, where it is used to predict individual and
collective choices.4,5 Its application in healthcare has grown
exponentially6,7 because the method is easy to apply and appears
efficient.8-11 DCEs in health economics are commonly used for
valuing health and nonhealth outcomes, investigating trade-offs
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between health and nonhealth outcomes, and developing prior-
ity setting frameworks.12 Nevertheless, there are also several other
areas of applications, for example, DCEs can be used alongside
measuring health and nonhealth benefits such as for model
parameterization13 and predicting uptake where there is no
information.14

Currently, among other barriers, the lack of evidence about the
external validity of DCEs inhibits greater use of DCEs in healthcare
decision making. External validity of DCE is defined as whether
individuals behave in reality as they state in a hypothetical
context.3 Hence the question is “Are healthcare choices
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predictable?” To support claims based on DCEs for decision mak-
ing in clinical or policy contexts, external validity is recognized as
an important research question.6,7,12 Although a DCE may succeed
in demonstrating internal validity (eg, how accurately preferences
are measured, the extent to which the results are consistent with a
priori expectations, and the extent to which the DCE takes account
of all things deemed important in the construct’s domain15),16-18

this does not guarantee external validity.16,19,20 Only a handful of
studies, mainly outside healthcare, have investigated the external
validity of DCEs21-32; these studies all focus on final outcomes
only.33 Nevertheless, the investigation of external validity should
be much broader.33 That is, where exactly do discrepancies arise
when stated preferences (SPs) derived from DCE do not match
revealed preferences (RPs)? Unraveling determinants of external
validity allows researchers to improve design, execution, and
analysis in DCE studies, providing for more accurate (ie, the degree
to which SP values being measured are close to the true RP values)
assessments of preferences.

An important starting point in unraveling determinants of
external validity of DCEs is to focus on the role of the researcher
who must decide on the DCE design and model specification. The
aim of this article was to determine whether the number of al-
ternatives in a DCE choice task should reflect the actual decision
context, and how complex the choice model specification needs to
be to predict the uptake of a healthcare intervention mimicking a
real-world decision correctly at an aggregate and individual levels.
As we focus on testing designs and models for conducting and
analyzing DCE data and their ability to predict the uptake of
healthcare choices, we should keep in mind that respondents in SP
studies probably have a different amount of information about the
healthcare interventions they are evaluating than would likely be
the case in RP data. Therefore, in our study, we maintain the
choice context constant (ie, both the DCE and “a stated choice task
mimicking a real-world healthcare decision” separately asked in
the survey are explicitly hypothetical). This means that in our
study we did not set out to compare purely SPs to purely RPs, but
rather we position our comparison somewhere in between. Thus,
we present partly an internal validation and partly an external
validation to the extent that hypothetical healthcare choices in the
real healthcare context are a stronger test than using a holdout
sample from the DCE. Using this approach, we can check whether
DCE is able to predict a hypothetical situation representing a real-
life choice, which is a minimal requirement for external validity
(ie, if DCE fails here, external validity will fail as well).33
Methods

Six DCEs were used, which varied in (1) medical condition and
(2) the number of alternatives per choice task. Participants were
randomized to a study setting. The information we presented
about the attributes and their levels was exactly the same as the
Dutch national flyer and invitation that participants would receive
from their general practitioner or the National Institute for Public
Health and the Environment to keep information asymmetry be-
tween the hypothetical situation representing the actual decision
and the actual decision as small as possible.

Conditions

Two medical conditions were considered: influenza vaccina-
tion and colorectal cancer (CRC) screening. These medical fields
were chosen because (1) subjects face a real choice because they
are not obliged to opt for vaccination or screening, which is vital to
test the consistency between stated and actual choices; (2) the
number of people facing this decision is large, contributing to the
relevance and feasibility of the study; and (3) the decision prob-
lems involve different diseases and consequences, which is
important for generalizability of the study findings. Approval for
the study was obtained from the Medical Ethics Committee,
Erasmus MC (MEC-2016-095).

Influenza vaccination
Elderly in the Netherlands, aged 60 years and older, have 2

options regarding influenza vaccination: to opt for vaccination or
to opt out. To determine the attributes and levels for the influenza
vaccination alternatives, literature,34-38 interviews with experts in
the field of influenza vaccination (n = 4), and 3 focus groups with
patients aged 60 years and older from general practices (n = 21)
were used (see de Bekker-Grob et al39 for more details). Five at-
tributes were determined as relevant for subjects to choose to
vaccinate or not: vaccination effectiveness (levels: 20%, 40%, 60%,
and 80%), risk of severe side effects (levels: 1, 10, and 100 in every
million persons), risk of mild side effects (levels: 1, 3, and 5 in
every 10 persons), protection duration (levels: 3, 6, and 12
months), and absorption time (levels: 2 and 4 weeks).

CRC screening
In the Netherlands, individuals aged 55 to 75 years have 2

options for CRC screening: to opt into or out of screening. To
determine the attributes and levels for the CRC screening alter-
natives, literature, interviews with experts in the field of CRC
screening (n = 3), and 3 focus groups with patients aged 55 to 75
years from general practices (n = 20) were used. Five attributes
were determined as relevant for subjects to choose for CRC
screening or not: screening effectiveness (levels: 20%, 40%, and
60%), risk of false-negative outcome (levels: 15%, 25%, and 35%),
waiting time for fecal occult blood test results (levels: 1, 2, and 3
weeks), waiting time for colonoscopy follow-up test (levels: 2, 4,
and 8 weeks), and frequency of the fecal occult blood test (levels:
every year, every 2 years, and every 3 years).

DCE Design

Each medical condition had 3 study settings: DCE choice tasks
with (1) 2 alternatives (ie, pairs), (2) 3 alternatives (ie, triples), and
(3) both (ie, mixed). Of note, the DCE design with 2 alternatives
was a better reflection of the actual decision for influenza vacci-
nation and for CRC screening. In each DCE study, subjects were
asked to consider all 2 or 3 alternatives in a choice task as realistic
alternatives and to choose the alternative that appealed most to
them. To maximize the D-efficiency of each DCE design while
accommodating substantial respondent heterogeneity, Bayesian
heterogeneous DCE designs40 were used. That is, for all 6 DCE
studies (ie, 2 medical conditions times 3 DCE studies [pairs, triples,
and mixed]), we generated a heterogeneous DCE design consisting
of 10 subdesigns; here, we used the Fortran programming lan-
guage for computations. Each respondent was assigned 1
randomly selected subdesign containing 16 choice tasks. Together
these subdesigns were optimal to estimate a multinomial logit
(MNL) model, on the basis of a main-effects utility function with
2-way interactions between the attribute “effectiveness” and the
other attributes. The prior preference information (attribute
weights) as required for the efficient Bayesian optimization
approach was obtained from best guess priors using expert
judgment and updated for each of these 6 DCE studies after a pilot
run of 100 respondents each.

The choice tasks of the 3 DCE studies of each condition were
the following: (1) 16 DCE choice tasks with 2 vaccination/
screening alternatives or 1 vaccination/screening alternative and 1
opt-out option; (2) 16 DCE choice tasks with 2 vaccination/



Table 1. Systematic choice modeling approach.

Characteristics Model

A B C D

1. Random-utility-maximization
decision rule

x x x x

2. Scale heterogeneity x x x

3. Systematic preference heterogeneity x x

4. Random opt-out utility x
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screening alternatives and 1 opt-out option; and (3) 8 DCE choice
tasks with 2 vaccination/screening alternatives followed by 8 DCE
choice tasks with 2 vaccination/screening alternatives and 1 opt-
out option.

Besides these 16 DCE choice tasks per DCE study and questions
regarding respondents’ characteristics, a choice task was added to
the survey mimicking the real-world choice (see Appendix
Figures A.1 and A.2 in Supplemental Materials found at https://
doi.org/10.1016/j.jval.2019.04.1924 for influenza vaccination and
CRC screening, respectively); this additional choice task was
placed after the first 8 DCE choice tasks. The choice task repre-
senting the real-world choice was kept constant among the DCE
studies per condition.

Finally, at the end of the survey, the respondents were asked
validated Likert-scale questions related to their decision style,41

health literacy,42,43 and numeracy44,45; these decision-making
skills were of interest on the basis of literature, expert opinions,
and focus groups because they all were hypothesized to have an
impact on vaccination or screening choices. The questionnaire
ended with queries about the complexity and length of the
questionnaire.

Sample Size and Recruitment

An online sample of 1419 individuals aged 60 years and older
and 1421 individuals aged 55 to 75 years from the Dutch general
population, nationally representative in terms of age, sex, educa-
tion, and geographic region, was recruited for the vaccination and
screening condition, respectively, via Survey Sampling Interna-
tional. Calculation of optimal sample sizes for a DCE is complicated
because it depends on the true values of the unknown parameters
estimated in the choice models.46 Nevertheless, on the basis of our
DCE design and pilot run, and using the sample size calculation of
de Bekker-Grob et al,47 a sample size of 1200 respondents per
condition (hence 400 respondents per DCE study) is sufficient to
reliably detect preference differences between attribute levels at
the 5% significance level.

Choice Modeling

Almost without exception, researchers in the field of health
economics have modeled their DCE data within a random utility
theory framework.6,46,48-50 Several random utility specifications
have been used to analyze discrete choice data.6,51,52 Each choice
model has its set of features, which should fit best the research
question. Because the aim of our study was to determine how
complex the choice model (complexity is here defined as the ca-
pacity to reveal underlying preferences; the more “complex” the
model, the more degrees of freedom and the higher the capacity
to include certain effects) needs to be to predict a choice
mimicking a real-world healthcare decision, we analyzed the DCE
data in a systematic way: from a simpler (model A, Table 1) to
more and more complex models (models B-D, Table 1). On the
basis of common practice in health economics,6,7 our starting
point was the homogeneous preference, homoskedastic MNL
(model A, Table 1)48:

Uin ¼VðXin; bÞ1εin: (1)

As shown in Equation 1, the latent utility of an alternative i in a
choice set Cn (as presented to individual n) is decomposable into 2
additively separable parts: (1) a systematic (explainable) compo-
nent specified as a function of the attributes of the alternatives
V(Xin, b) and (2) a random (unexplainable) component εin repre-
senting stochastic variation in choices. The MNL model has 3 key
properties: (1) error terms are assumed independent and identi-
cally extreme value type I distributed across observations (IID); (2)
independence of irrelevant alternatives, resulting from (1); and (3)
no unattributable preference heterogeneity. Such assumptions
may be restrictive in describing human behavior, perhaps
compromising the external validity of DCE results. Therefore, we
started by first relaxing the IID assumption (heteroskedastic
multinomial logit [HMNL]; model B, Table 1) followed by relaxing
preference homogeneity with known (up to 21 observed) subject
characteristic sources (HMNL1; model C, Table 1) and by taking
randomness of the alternative specific constant (ASC) parameter
capturing systematic preferences toward opting out into account
(HMNL11; model D, Table 1). That is, in model D we aimed to
explain heterogeneity by including subject characteristics and
using choice responses to obtain individual conditional
parameters (see later) to explain heterogeneity regarding the ASC
(ie, an). In this way, we are able to distinguish explained
heterogeneity from unexplained heterogeneity. Hence, the
following choice processes with scale and/or preference
heterogeneity and/or random opt-out utility were used (see
Equations 2-5):

Uðopt2outÞin ¼ an1εin

Uðopt2inÞin ¼ bXi1dZ1nXi1εin (2)

where

an ¼ a 1 qZ1n 1 hn; (3)

hn ¼ N
�
0; ðsaÞ2

�
;

εin ¼ HEVðmnÞ; (4)

mn ¼ expðgZ2nÞ: (5)

The quantity an is the ASC for opting out for vaccination/screening
compared with opting in, Z1 and Z2 are 2 sets of subject charac-
teristics, hn is a normally distributed random component in an,
and HEV is a heteroskedastic extreme value distribution with
variance parameter mn.53,54 To use terminology common to
discrete choice models, our full specification is a heteroskedastic
error component model.55,56 For each DCE data set, we used
this 4-step approach (models A-D) to determine the optimal
utility function using the Pythonbiogeme software (Michiel Bier-
laire, Ecole Polytechnique Federale de Lausanne, Lausanne,
Switzerland)57,58 and taking the best model fits into account on
the basis of the Bayesian information criterion.

https://doi.org/10.1016/j.jval.2019.04.1924
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Is Patient Choice Predictable?

For each DCE study, we first determined for the fixed choice
task mimicking the real-world choice which proportion of the
sample opted for vaccination or screening (ie, the observed up-
take). Second, using the parameter values estimated from the DCE
choice tasks, we determined for each DCE study the predicted
vaccination/screening uptake on the basis of the 4 best-fitting
choice models (ie, models A-D, Table 1). Finally, we determined
to what extent the predicted uptake was in agreement with the
observed uptake at an aggregate and individual levels using
probability rules, mean values, and 95% confidence intervals,
whereas at an individual level for model D conditional parameter
estimates were taken into account as well. Regarding the latter,
using the coefficients of model D, the Pythonbiogeme software,
the conditional parameter approach of Train59 and Revelt and
Train,60 and Excel (Hess61), we were able to determine the ASCs
per individual (ASC_i; hence, an). These ASC_i’s were added to the
data set as a variable, because if individuals have systematically
different preferences, which are unrelated to observed character-
istics, ignoring to address it can bias the estimates of the prefer-
ence weights. The utility function of model D, incorporating the
ASC_i’s, was used to determine the utility weight for each indi-
vidual for influenza vaccination in the choice task mimicking the
real-world decision. Then, like models A to C, we first simulated
the probabilities for each individual that he or she would opt for
influenza vaccination. Second, we summarized the probabilities
for influenza vaccination for respondents who opted for vaccina-
tion in the choice task mimicking the real-world decision. Third,
Table 2. Number of completes, dropout rates, and perceived burde

Issues Pairs

n %

Influenza vaccination
Responsiveness
Completes 423
Dropouts 52
Dropout rate 10.9

Difficulty filling the questionnaire (yes) 2.6
Very easy 104
Easy 196
Neutral 112
Difficult 10
Very difficult 1

Length of the questionnaire (good) 83.0
Too long 72
Not too long, not too short 351
Too short 0

CRC screening
Responsiveness
Completes 406
Dropouts 57
Dropout rate 12.3

Difficulty filling the questionnaire (yes) 8.9
Very easy 40
Easy 140
Neutral 190
Difficult 31
Very difficult 5

Length of the questionnaire (good) 82.0
Too long 72
Not too long, not too short 333
Too short 1

CRC indicates colorectal cancer; DCE, discrete choice experiment.
we summarized the probabilities for no vaccination for re-
spondents who opted out of influenza vaccination in the choice
task mimicking the real-world decision. Finally, these probability
scores were summarized, divided by the sample size, and multi-
plied by 100 to obtain the percentage of correctly predicted
choices at an individual level.62 The same procedure was followed
for the CRC screening condition.
Results

Respondents

In total, 1429 and 1421 subjects were recruited to participate in
the DCE studies concerning influenza vaccination and CRC
screening, respectively. This resulted in 1261 (89%) and 1219 (86%)
completes. In both conditions, there were no substantial differ-
ences between the 3 DCE designs regarding dropout rates or
perceived burden (see Table 2).

Respondents of the vaccination condition had a mean age of 66
6 5 years, about 56% were men, and one-third had a lower
educational level (see Appendix Table A.1 in Supplemental Ma-
terials found at https://doi.org/10.1016/j.jval.2019.04.1924).
Approximately 75% of the respondents reported that they were in
good health, 27% had experienced influenza (symptoms) last year,
and 30% of the respondents mentioned that they had never been
vaccinated against influenza. There were no significant differences
between the 3 samples in respondents’ characteristics, except for
the variable sex.
n for the influenza vaccination and CRC screening DCE surveys.

Triples Mixed

n % n %

418 420
57 59

12.0 12.3
2.9 2.9

77 89
217 225
112 94
11 11
1 1

79.7 85.5
85 69

333 359
0 0

406 407
79 66

16.3 14.0
9.4 7.9

27 39
166 163
175 173
35 28
3 4

81.8 81.6
74 75

332 332
0 0

https://doi.org/10.1016/j.jval.2019.04.1924


Table 3. DCE (triples) results: influenza vaccination survey.

Triples Utility function Model A
(MNL model)

Model B
(HMNL model)

Model C (HMNL
model 1
systematic
preference
heterogeneity)

Model D (HMNL
model 1
systematic
preference
heterogeneity 1
random opt-out
utility)

Coefficient
value

P
value

Coefficient
value

P
value

Coefficient
value

P
value

Coefficient
value

P
value

ASC

No vaccination 0.974 ,.010* 0.522 ,.010* 2.960 ,.010* 5.630 ,.010*

Attributes (main effects)
Scaled (/10) Effectiveness 0.146 ,.010* 0.059 ,.010* 0.089 .010* 0.148 ,.010*

Serious side effects

1/1.000.000 0.283 0.120 0.118 0.391

10/1.000.000 0.227 ,.010* 0.107 .020† 0.247 .040† 0.193 .110

100/1.000.000 20.510 ,.010* 20.227 .010* 20.365 .010* 20.584 ,.010*

Mild side effects

1/10 0.078 0.010 0.283 0.247

3/10 20.011 0.011 .750 20.342 ,.010* 20.262 .030†

5/10 20.067 .330 20.020 .560 0.059 .600 0.015 .900

Protection duration

3 mo 20.271 20.120 20.029 20.170

6 mo 0.165 .020† 0.063 .110 0.249 .010* 0.347 ,.010*

12 mo 0.106 .120 0.057 .130 20.220 .040† 20.177 .120

Waiting time

2 wk 0.013 20.019 20.037 20.036

4 wk 20.013 .780 0.019 .430 0.037 ,.010* 0.036 ,.010*

Two-way interactions
Scaled (/10) eff 3 serious10 20.315 .010* 20.143 .050† 20.261 .070‡ 20.155 .280
Scaled (/10) eff 3 serious100 0.192 .150 0.144 .080‡ 0.046 .780 20.127 .440
Scaled (/100) eff 3 mild3 0.530 .660 0.018 .970 1.630 .280 1.360 .370
Scaled (/100) eff 3 mild5 20.242 .840 20.110 .850 20.619 .680 21.370 .370
Scaled (/10) eff 3 dur6 20.246 .040† 20.080 .200 20.172 .250 20.209 .170
Scaled (/10) eff 3 dur12 0.237 .050† 0.042 .500 0.407 .010* 0.506 ,.010*
Scaled (/100) eff 3 wait4 0.059 .470 20.021 .610 0.022 .710 20.038 .550

Scale heterogeneity

Good health literacy – 0.362 ,.010* 0.030 .510 20.015 .860

Good numeracy – 0.264 .020† 0.032 .490 0.138 .110

Male – 20.488 ,.010* 0.237 ,.010* 0.032 .750

Age . 65 y – 20.344 ,.010* 20.006 .910 20.211 .010*

Family impact on decision – 21.790 .070‡ 20.118 .230 20.037 .790

GP visit last month – 21.500 ,.010* 20.184 ,.010* 20.006 .940

Good health – 1.110 ,.010* 20.287 ,.010* 0.037 .740

Systematic preference heterogeneity

Age . 65 y 3 constant
“no vacc”

– – 0.545 ,.010* 2.620 .010*

Age . 65 y 3 eff – – 20.042 .080‡ 20.023 .410

Attitude for 3 constant
“no vacc”

– – 21.810 ,.010* 25.74 ,.010*

Attitude for 3 dur6 – – 20.084 .290 20.125 .120

Attitude for 3 dur12 – – 0.426 ,.010* 0.394 ,.010*

Attitude for 3 eff – – 0.235 ,.010* 0.164 ,.010*

continued on next page
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Table 3. Continued

Triples Utility function Model A
(MNL model)

Model B
(HMNL model)

Model C (HMNL
model 1
systematic
preference
heterogeneity)

Model D (HMNL
model 1
systematic
preference
heterogeneity 1
random opt-out
utility)

Coefficient
value

P
value

Coefficient
value

P
value

Coefficient
value

P
value

Coefficient
value

P
value

Attitude for 3 serious10 – – 0.012 .870 0.016 .820

Attitude for 3 serious100 – – 20.189 .050† 20.041 .680

Attitude for 3 wait4 – – 20.149 ,.010* 20.134 .010*

No disease 3 constant
“no vacc”

– – 21.020 ,.010* 21.580 .130

No disease 3 mild3 – – 0.217 ,.010* 0.170 .020†

No disease 3 mild5 – – 20.028 .700 20.008 .920

Deliberative DM style 3 eff – – 0.043 .020† 0.063 .040†

Deliberative DM style 3 mild3 – – 0.159 .060‡ 0.157 .060†

Deliberative DM style 3 mild5 – – 20.122 .160 20.130 .130

High education 3 eff – – 0.078 ,.010* 0.097 ,.010*

High education 3 dur6 – – 20.160 .030† 20.173 .020†

High education 3 dur12 – – 20.001 .990 0.005 .950

Impact family 3 constant
“no vacc”

– – 20.423 .040† 22.660 .140

Flu symptoms last year 3
“no vacc”

– – 0.289 .020† 0.416 .710

Last month GP visit 3 mild3 – – 0.183 .020† 0.128 .090‡

Last month GP visit 3 mild5 – – 20.125 .110 20.112 .150

Last month GP visit 3
serious10

– – 0.016 .830 20.001 .990

Last month GP visit 3
serious100

– – 20.217 .020† 20.134 .170

Good health 3 constant
“no vacc”

– – 1.330 ,.010* 2.450 .040†

Good health 3 eff – – 0.103 ,.010* 0.069 .060‡

Good health 3 serious10 – – 0.085 .230 0.073 .330

Good health 3 serious100 – – 20.212 .020† 20.072 .550

Good health literacy 3
constant “no vacc”

– – 20.384 .020† 20.173 .840

Good health literacy 3 eff – – 20.089 ,.010* 20.087 ,.010*

Good numeracy 3 constant
“no vacc”

– – 1.110 ,.010* 1.980 .030†

Good numeracy 3 eff – – 0.127 ,.010* 0.134 ,.010*

Male 3 constant “no vacc” – – 21.090 ,.010* 21.670 .070†

Male 3 eff – – 21.010 ,.010* 20.098 ,.010*

Male 3 serious10 – – 20.171 .010* 20.175 .010*

Male 3 serious100 – – 0.260 ,.010* 0.165 .100‡

Vacc last year 3 constant
“no vacc”

– – 23.060 ,.010* 28.980 ,.010*

Vacc last year 3 serious10 – – 0.011 .890 0.016 .840

Vacc last year 3 serious100 – – 20.381 ,.010* 20.261 .010*

Vacc last year 3 dur6 – – 20.037 .660 20.086 .310

continued on next page
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Table 3. Continued

Triples Utility function Model A
(MNL model)

Model B
(HMNL model)

Model C (HMNL
model 1
systematic
preference
heterogeneity)

Model D (HMNL
model 1
systematic
preference
heterogeneity 1
random opt-out
utility)

Coefficient
value

P
value

Coefficient
value

P
value

Coefficient
value

P
value

Coefficient
value

P
value

Vacc last year 3 dur12 – – 0.350 ,.010* 0.301 ,.010*

No side effects 3 constant
“no vacc”

– – 21.150 ,.010* 23.700 ,.010*

No side effects 3 mild3 – – 0.054 .450 0.031 .680

No side effects 3 mild5 – – 20.178 .020† 20.113 .140

Flu although vacc 3 constant
“no vacc”

– – 0.416 ,.010* 1.740 .180

Random opt-out utility (SD of ASC)

– – – 6.400 ,0.01*
Goodness of fit

LL 27106 27060 24713 23459

Number of free parameters 16 23 68 69

AIC 2.130 2.118 1.430 1.055

BIC 2.139 2.132 1.471 1.097

Respondents 418 418 418 418

AIC indicates Akaike information criterion; ASC, alternative specific constant; BIC, Bayesian information criterion; DCE, discrete choice experiment; DM, decision-making;
GP, general practitioner; HMNL, heteroskedastic model; LL, log likelihood; MNL, multinomial model; SD, standard deviation.
*Significant at the 1% level.
†Significant at the 5% level.
‡Significant at the 10% level.
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Respondents of the screening condition had a mean age of 63
6 5 years, about 50% were men, and one-third had a lower
educational level (see Appendix Table A.2 in Supplemental Ma-
terials found at https://doi.org/10.1016/j.jval.2019.04.1924).
Approximately 73% of the respondents reported that they were in
good health, 13% suffered from cancer, and 73% mentioned that
they have experience with screening. There were no significant
differences in respondents’ characteristics across the 3 samples.

Model Fit and Parameters

In the context of influenza vaccination data and focusing on the
sample of respondents who received 3 alternatives per choice task
(ie, triples), for all 4 models, the directions of the coefficients of
the vaccination attributes were consistent with our a priori hy-
potheses, which implies theoretical validity of the different
models (Table 3). The more complex/sophisticated the model, the
better the model fit. There is a very large difference in model fit
between the models that took preference heterogeneity into ac-
count versus the simpler models. Looking at the model with the
best model fit (model D), all vaccination attributes influenced
patients’ decision behavior for influenza vaccination. There is ev-
idence of substantial scale and preference heterogeneity.
Regarding scale heterogeneity, older respondents were signifi-
cantly less consistent (P=.010) in their choices (ie, more affected by
random variation in utility29). Regarding preference heterogeneity,
11 respondent characteristics were observed that explained the
preference heterogeneity found (P,.050): age, sex, education,
health literacy, numeracy, decision-making style, health state,
having a chronic disease, general attitude to vaccination, having
been vaccinated last year, and experience with side effects of
vaccination. Model D was also the best-fit model for the vacci-
nation sample of respondents who filled in the pairs or the mixed
choice tasks (see Appendix Tables A.3 and A.4, respectively, in
Supplemental Materials found at https://doi.org/10.1016/j.jval.201
9.04.1924).

Respondents’ characteristics that explained scale and prefer-
ence heterogeneity differed between the 3 DCE vaccination sam-
ples. Nevertheless, 7 characteristics explained part of the observed
scale and/or preference heterogeneity in all 3 DCE vaccination
samples: sex, health literacy, numeracy, decision-making style,
general attitude to vaccination, having a disease, and having been
vaccinated last year.

In the context of CRC screening data, again focusing on the
sample of respondents who received the DCE with triples, for all 4
models the directions of the coefficients of the screening attri-
butes showed the expected signs and most of them were statis-
tically significant (Table 4). Also in this sample, model D had the
best model fit. Again substantial scale and preference heteroge-
neity were found.

Regarding scale heterogeneity, respondents who had a more
deliberative decision style, lived alone, or had a higher level of
numeracy were more consistent in their choices (P,.010).
Regarding preference heterogeneity, 12 respondent characteristics
were observed that explained the preference heterogeneity found
(P,.050): age, sex, education, health literacy, numeracy, decision-
making style, health state, general attitude toward screening,
living alone, CRC history in family, screening experience, and
having consulted a general practitioner last month. Model D was
also the model with the best model fit for the screening sample of

https://doi.org/10.1016/j.jval.2019.04.1924
https://doi.org/10.1016/j.jval.2019.04.1924
https://doi.org/10.1016/j.jval.2019.04.1924


Table 4. DCE (triples) results: CRC screening survey.

Triples Utility function Model A Model B Model C Model D

(MNL model) (HMNL model) (HMNL model 1
systematic
preference
heterogeneity)

(HMNL model 1
systematic
preference
heterogeneity 1
random opt-out
utility)

Coefficient
value

P value Coefficient
value

P value Coefficient
value

P value Coefficient
value

P value

ASC

No CRC screening 22.710 ,.010* 22.620 ,.010* 0.517 .230 20.407 .910

Attributes (main effects)
Scaled (/10) Effectiveness 0.020 ,.010* 0.018 ,.010* 0.008 .200 0.016 .040

False negative 20.048 ,.010* 20.052 ,.010* 0.001 .940 20.022 .150

Frequency

Every year 0.133 0.127 20.132 20.176

Every 2 y 0.144 .020† 0.214 ,.010* 0.335 ,.010* 0.342 ,.010*

Every 3 y 20.277 ,.010* 20.341 ,.010* 20.203 .090‡ 20.166 .180

Waiting time diagn test

1 wk 20.033 20.180 20.116 20.096

2 wk 0.034 .580 0.241 ,.010* 0.174 .010* 0.194 ,.010*

3 wk 20.001 .990 20.061 ,.010* 20.058 .400 20.099 .150

Waiting time f-up test

2 wk 20.091 0.131 0.239 0.218

4 wk 0.119 .060‡ 0.036 .400 0.019 .740 0.048 .360

8 wk 20.028 .660 20.167 ,.010* 20.258 ,.010* 20.265 ,.010*

Two-way interactions
Scaled (/10) eff 3 fneg 0.001 .640 0.001 .550 0.001 .510 0.002 .180
Scaled (/10) eff 3 freq2 0.008 .590 20.021 .030† 20.032 .010* 20.032 .010*
Scaled (/10) eff 3 freq3 20.019 .230 0.026 .010* 0.047 ,.010* 0.049 ,.010*
Scaled (/100) eff 3 waitdiag2 0.003 .850 20.009 .350 20.009 .430 20.012 .260
Scaled (/100) eff 3 waitdiag3 0.004 .800 0.018 .080‡ 0.015 .220 0.020 .080‡

Scaled (/10) eff 3 wait f-up4 20.185 .220 20.017 .860 0.062 .600 0.005 .970
Scaled (/10) eff 3 wait f-up8 20.281 .050† 0.085 .370 0.054 .640 0.083 .440

Scale heterogeneity

Age . 65 y – 20.356 ,.010* 0.633 ,.010* 0.743 .110

Did not have (had) cancer – 0.285 ,.010* 20.090 ,.010* 20.122 .310

Rather deliberative
decision making

– 0.403 ,.010* 0.493 ,.010* 0.352 ,.010*

Bad experience – 22.410 ,.010* 20.333 .090‡ 20.541 .170

Health literacy – 20.246 ,.010* 0.104 .090‡ 0.059 .510

Living alone – 0.337 ,.010* 0.562 ,.010* 0.540 ,.010*

Male – 0.253 ,.010* 20.456 ,.010* 20.213 .040

Good numeracy – 0.279 ,.010* 20.575 ,.010* 20.350 ,.010*

Did not have screening
experience

– 21.490 ,.010* 20.128 .070‡ 20.132 .220

Systematic preference heterogeneity

Age . 65 y 3 constant
“no screening”

– – 1.730 ,.010* 1.690 .400

Age . 65 y 3 eff – – 20.021 ,.010* 20.026 ,.010*

Age . 65 y 3 fneg – – 0.033 ,.010* 0.040 ,.010*

Age . 65 y 3 freq2 – – 20.111 .020† 20.132 .010*

Age . 65 y 3 freq3 – – 0.149 .010* 0.165 .010*

continued on next page
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Table 4. Continued

Triples Utility function Model A Model B Model C Model D

(MNL model) (HMNL model) (HMNL model 1
systematic
preference
heterogeneity)

(HMNL model 1
systematic
preference
heterogeneity 1
random opt-out
utility)

Coefficient
value

P value Coefficient
value

P value Coefficient
value

P value Coefficient
value

P value

Age . 65 y 3 waitdiagn2 – – 20.033 .440 20.051 .220

Age .65 y 3 waitdiagn3 – – 20.130 .010* 20.100 .040†

Attitude for 3 constant
“no screening”

– – 23.760 ,.010* 215.500 ,.010*

Attitude for 3 eff – – 0.020 ,.010* 0.014 .020†

Attitude for 3 fneg – – 20.047 ,.010* 20.035 ,.010*

Attitude for 3 freq2 – – 0.067 .430 0.065 .440

Attitude for 3 freq3 – – 20.449 ,.010* 20.503 ,.010*

No cancer 3 constant
“no screening”

– – 21.060 ,.010* 24.740 .070‡

No cancer 3 fneg – – 20.011 .100‡ 20.009 .160

CRC in family 3 eff – – 20.005 .090‡ 20.007 .060‡

CRC in family 3 fneg – – 0.021 ,.010* 0.020 ,.010*

CRC in family 3 waitdiagn2 – – 20.081 .060‡ 20.074 .080‡

CRC in family 3 waitdiagn3 – – 0.092 .050† 0.078 .100‡

Deliberative DM style 3
constant “no screening”

– – 20.408 .070‡ 24.910 .050†

Deliberative DM style 3 fneg – – 20.013 .020† 20.015 .020†

Deliberative DM style 3 freq2 – – 20.076 .080‡ 20.075 .070‡

Deliberative DM style 3 freq3 – – 0.080 .090‡ 0.085 .070‡

High education 3 constant
“no screening”

– – 20.859 ,.010* 22.990 .190

High education 3 fneg – – 20.011 .040† 20.012 .020†

Bad experience 3 fneg – – 20.032 ,.010* 20.036 .300

Bad experience 3 freq2 – – 0.366 .040† 0.539 .090‡

Bad experience 3 freq3 – – 20.255 .170 20.179 .480

Last month GP visit 3 eff – – 20.008 .010* 20.009 .010*

Last month GP visit 3 fneg – – 0.015 ,.010* 0.014 .020†

Last month GP visit 3 freq2 – – 0.007 .870 0.015 .710

Last month GP visit 3 freq3 – – 20.136 .010* 20.123 .010*

Last month GP visit 3
waitdiagn2

– – 20.100 .010* 20.086 .030†

Last month GP visit 3
waitdiagn3

– – 0.064 .140 0.056 .180

Good health 3 constant
“no screening”

– – 20.636 ,.010* 0.144 .950

Good health 3 fneg – – 20.011 .060‡ 20.009 .110

Good health 3 freq2 – – 0.086 .070‡ 0.090 .050†

Good health 3 freq3 – – 20.061 .240 20.060 .220

Good health literacy 3
constant “no screening”

– – 0.628 ,.010* 0.677 .730

Good health literacy 3 fneg – – 0.012 .020† 0.011 .050†

Good health literacy 3 freq2 – – 20.103 .020† 20.091 .020†

continued on next page

1058 VALUE IN HEALTH SEPTEMBER 2019



Table 4. Continued

Triples Utility function Model A Model B Model C Model D

(MNL model) (HMNL model) (HMNL model 1
systematic
preference
heterogeneity)

(HMNL model 1
systematic
preference
heterogeneity 1
random opt-out
utility)

Coefficient
value

P value Coefficient
value

P value Coefficient
value

P value Coefficient
value

P value

Good health literacy 3 freq3 – – 0.057 .220 0.066 .130

Last month hospital visit
3 eff

– – 0.005 .080† 0.002 .440

Living alone 3 constant
“no screening”

– – 0.924 ,.010* 1.110 .580

Living alone 3 freq2 – – 20.064 .140 20.073 .070‡

Living alone 3 freq3 – – 0.230 ,.010* 0.206 ,.010*

Living alone 3 wait f-up4 – – 20.037 .340 20.047 .190

Living alone 3 wait f-up8 – – 0.076 .050† 0.080 .030†

Male 3 constant “no screening” – – 21.300 ,.010* 21.360 .530

Male 3 fneg – – 20.013 .060‡ 20.006 .330

Male 3 freq2 – – 0.100 .080‡ 0.073 .130

Male 3 freq3 – – 20.224 ,.010* 20.151 .020†

Male 3 waitdiagn2 – – 0.014 .780 20.010 .790

Male 3 waitdiagn3 – – 0.107 .040† 0.057 .170

Good numeracy 3 constant
“no screening”

– – 21.720 ,.010* 20.030 .990

Good numeracy 3 eff – – 0.028 ,.010* 0.024 ,.010*

Good numeracy 3 fneg – – 20.064 ,.010* 20.052 ,.010*

No screening experience
3 constant “no screening”

– – 1.990 ,.010* 7.180 .010*

No screening experience
3 freq2

– – 20.119 .080‡ 20.123 .060‡

No screening experience
3 freq3

– – 20.031 .660 20.056 .430

No screening experience
3 wait f-up4

– – 0.017 .760 -0.001 .990

No screening experience
3 wait f-up8

– – 0.236 ,.010* 0.184 ,.010*

Random opt-out utility (SD of ASC)

– – – 10.200 ,.010*
Goodness of fit

LL 25614 25265 24778 24084

Number of free parameters 16 25 86 87

AIC 1.734 1.629 1.497 1.284

BIC 1.743 1.644 1.551 1.338

Respondents 406 406 406 406

AIC indicates Akaike information criterion; ASC, alternative specific constant; BIC, Bayesian information criterion; CRC, colorectal cancer; DCE, discrete choice
experiment; DM, decision-making; GP, general practitioner; HMNL, heteroskedastic model; LL, log likelihood; MNL, multinomial model; SD, standard deviation.
*Significant at the 1% level.
†Significant at the 5% level.
‡Significant at the 10% level.
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respondents who filled in the pairs and the triples (see Appendix
Tables A.5 and A.6, respectively, in Supplemental Materials found
at https://doi.org/10.1016/j.jval.2019.04.1924). Respondent char-
acteristics that explained scale and preference heterogeneity also
differed between the 3 DCE screening samples. Nevertheless, 8
respondent characteristics explained part of the observed scale
and/or preference heterogeneity in all 3 DCE screening samples:
age, sex, numeracy, decision-making style, general attitude toward

https://doi.org/10.1016/j.jval.2019.04.1924


Table 5. DCE model fit and prediction results based on influenza vaccination.

Model
fit and
prediction
results

Pairs Triples Mixed

Model
A
(MNL)

Model
B
(HMNL)

Model
C
(HMNL1)

Model
D
(HMNL
11)

Model
A
(MNL)

Model
B
(HMNL)

Model
C
(HMNL1)

Model
D
(HMNL
11)

Model
A
(MNL)

Model
B
(HMNL)

Model
C
(HMNL1)

Model
D
(HMNL
11)

Goodness of fit
LL 24357 24329 24087 24086 27106 27060 25149 23614 25699 25682 24793 23949
No. of free
parameters

14 21 51 52 16 23 59 60 14 19 54 55

AIC 1.292 1.286 1.223 1.223 2.130 2.118 1.558 1.099 1.700 1.697 1.443 1.192
BIC 1.300 1.298 1.253 1.254 2.139 2.132 1.593 1.135 1.709 1.708 1.475 1.225
Respondents 423 423 423 423 418 418 418 418 420 420 420 420

Vaccination uptake
Observed* 64.5% 64.5% 64.5% 64.5% 61.2% 61.2% 61.2% 61.2% 66.2% 66.2% 66.2% 66.2%
Predicted mean 73.3% 76.6% 66.2% 65.9% 56.8% 48.8% 58.4% 61.7% 58.9% 55.7% 60.9% 65.0%
Delta 8.8% 12.1% 1.7% 1.4% 24.4% 212.4% 22.8% 0.5% 27.3% 210.5% 25.3% 21.2%
Lower bound CI 68.8% 72.2% 61.4% 61.2% 51.8% 43.9% 53.5% 56.9% 53.9% 50.8% 56.1% 60.2%
Upper bound CI 77.4% 80.6% 70.7% 70.4% 61.5% 53.7% 63.1% 66.4% 63.6% 60.5% 65.6% 69.6%

Proportion of
choices that
were predicted
correctly at an
individual level

56.8% 59.6% 74.6% 81.6% 51.5% 49.9% 81.7% 93.6% 52.9% 51.7% 78.6% 88.7%

AIC indicates Akaike information criterion; BIC, Bayesian information criterion; CI, confidence interval; DCE, discrete choice experiment; HMNL, heteroskedastic model;
HMNL1, heteroskedastic model with preference heterogeneity; HMNL11, heteroskedastic model with preference heterogeneity and random intercept; LL, log
likelihood; MNL, multinomial model.
*Vaccination uptake observed is the proportion of respondents who opted for influenza vaccination in the fixed-choice task mimicking real-life choice task.
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CRC screening, screening experience, living alone, and health
state.

Are Healthcare Choices Predictable?

Irrespective of the number of alternatives per choice task, the
choice to opt for influenza vaccination and CRC screening was
correctly predicted by the DCE at an aggregate level if scale, pref-
erence heterogeneity, and a random opt-out utility were taken into
Table 6. DCE model fit and prediction results based on colorectal s

Model
fit and
prediction
results

Pairs Triples

Model
A

Model
B

Model
C

Model
D

Model
A

Model
B

(MNL) (HMNL) (HMNL1) (HMNL11) (MNL) (HMNL

Goodness of fit
LL 24357 24329 24087 24086 27106 27060
No. of free
parameters

14 21 51 52 16 23

AIC 1.292 1.286 1.223 1.223 2.130 2.118
BIC 1.300 1.298 1.253 1.254 2.139 2.132
Respondents 423 423 423 423 418 418

CRC screening
uptake
Observed* 92.9% 92.9% 92.9% 92.9% 92.9% 92.9%
Predicted mean 97.4% 96.6% 95.2% 95.0% 84.9% 86.5%
Delta 4.5% 3.7% 2.3% 1.4% 28.0% 26.4%
Lower bound CI 95.2% 94.3% 92.8% 92.5% 81.1% 82.7%
Upper bound CI 98.6% 98.1% 97.2% 97.0% 88.3% 89.6%

Proportion of
choices that
were predicted
correctly at an
individual level

80.6% 89.9% 90.5% 91.2% 79.9% 83.1%

AIC indicates Akaike information criterion; BIC, Bayesian information criterion; CI, con
heteroskedastic model; HMNL1, heteroskedastic model with preference heterogenei
intercept; LL, log likelihood; MNL, multinomial model.
*CRC screening uptake observed is the proportion of respondents who opted for CR
account (Table 5 and Table 6 respectively; model D). A similar
phenomenon was seen for 4 of 6 DCE samples, if only scale and
observed preference heterogeneitywere taken into account (model
C). For bothmedical conditions we found that a better model fit did
not automatically mean better prediction (eg, HMNL vs MNL).

At an individual level, the choice for vaccination was predicted
best using a heteroskedastic error component model that took
into account observed preference heterogeneity through subject
urvey.

Mixed

Model
C

Model
D

Model
A

Model
B

Model
C

Model
D

) (HMNL1) (HMNL11) (MNL) (HMNL) (HMNL1) (HMNL11)

25149 23614 25699 25682 24793 23949
59 60 14 19 54 55

1.558 1.099 1.700 1.697 1.443 1.192
1.593 1.135 1.709 1.708 1.475 1.225

418 418 420 420 420 420

92.9% 92.9% 91.9% 91.9% 91.9% 91.9%
88.0% 90.6% 90.1% 90.4% 91.6% 93.0%

24.9% 22.3% 21.8% 21.5% 20.3% 21.2%
84.4% 87.4% 86.9% 87.1% 88.5% 90.2%
90.9% 93.3% 92.9% 93.1% 94.1% 95.4%

87.9% 97.1% 83.6% 84.8% 89.0% 93.9%

fidence interval; CRC, colorectal cancer; DCE, discrete choice experiment; HMNL,
ty; HMNL11, heteroskedastic model with preference heterogeneity and random

C screening in the fixed-choice task mimicking real-life choice task Appendix.
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characteristics and unknown subject characteristic sources that
systematically affect the preference for opting out (model D):
81.6%, 93.6%, and 88.7% of the individuals’ choices were correctly
predicted, using a DCE with 2 alternatives or 3 alternatives per
choice task, or both, respectively.

At an individual level, the choice for screening was also pre-
dicted best using model D: 91.2%, 97.1%, and 93.9% of the in-
dividuals’ choices were correctly predicted, using pairs, triples,
and mixed choice tasks, respectively. Overall, looking at the results
of both surveys, using the 3 alternatives per choice task, a heter-
oskedastic error component model with observed preference
heterogeneity, and conditional parameter estimates for the un-
observed preference heterogeneity for opting out seemed to
correctly predict choices mimicking real-world decisions in more
than 93% of the respondents at an individual level. As we are
getting high prediction success statistics with this rather
noncomplex model, our objective is attained; there is no clear
rationale for using more complex (ie, advanced) models here.

Discussion

This study showed that irrespective of the number of alter-
natives per choice task over the range tested, the choice
mimicking a real-world decision to opt for influenza vaccination
and CRC screening was correctly predicted by a DCE-based model
at an aggregate level, if scale and preference heterogeneity were
taken into account. At an individual level, using the 3 alternatives
per choice task and a heteroskedastic error component model
seemed to be most promising, correctly predicting in 93.6% and
97.1% of the cases for vaccination and screening, respectively. Five
respondent characteristics consistently explained a part of the
observed scale and/or preference heterogeneity: sex, numeracy
skill, decision-making style, general attitude toward the health
intervention of interest, and experience with the health inter-
vention of interest. For the models and designs we used, our study
showed that more than 93% of choices were correctly predicted at
an individual level, giving a degree of confidence in the results and
external validity of SP studies.

A healthcare DCE study of Mohammadi et al63 found that their
best model correctly predicted at an individual level in 83% of the
participants, which is somewhat lower than our findings. The
same study however showed that individual-specific coefficients
reflected respondents’ actual choices more closely compared with
aggregate-level estimates, which agrees with our outcomes.
Wright et al64 mentioned that it is likely that if scale heterogeneity
is unaddressed in a healthcare DCE, the results of such a study
might be misleading. Our study confirmed that this is indeed the
case, but additionally our results showed that if systematic pref-
erence heterogeneity is ignored, the results of healthcare DCE
studies might be misleading as well.

Although 2 or 3 alternatives per DCE choice task, or both, all
predicted well at an aggregate level, we recommend the use of the
3 alternatives per DCE choice task design (at least if an opt-out
alternative is included). Literature outside healthcare already
shows that more robust choice models can be constructed from
the 3 alternatives per choice task design than from the 2 alter-
natives per choice task design.65 In addition, our results showed
that the 3 alternatives per choice task DCEs did not differ in
dropout rates or perceived burden compared with our other DCE
samples. Nevertheless, we found a slightly better prediction at an
individual level in the case of the 3 alternatives per choice task
design, probably because of a richer data set. Note that our results
are conditional on the number of attributes used in our study;
decisions involving more attributes should view our recommen-
dations as indicative.
Our study also has several limitations. First, there is the issue of
generalizability of our results. Although the results were based on
2 unlabeled DCE designs in different disease areas, further
research is needed to determine whether our results hold in
labeled DCE designs and other disease contexts. Second, because
of the systematic approach we used starting from common prac-
tice in health economics, other choice models (eg, latent class
model and mixed logit model) and ensemble analyses were not
investigated. Further research is therefore recommended,
although researchers should be cautious about overfitting their
data. In addition, further research is recommended to see whether
DCE holds its potential when predicting real-world decisions,
because issues such as hypothetical bias and difference in amount
of information may play an important role.
Conclusions

Our study shows that DCE models that take into account both
scale and preference heterogeneity were better able to predict
choices mimicking real-world decisions and performed best when
3 alternatives were presented to respondents. Patient character-
istics such as sex, numeracy, decision-making style, general atti-
tude toward the health intervention of interest, and experience
with the health intervention of interest seem to play a crucial role
in predicting healthcare choices. Further research is needed to
determine whether this result remains in other contexts.
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