1,704 research outputs found
Low energy photoelectron diffraction analysis at high angular resolution of Cu and Mn/Cu surfaces
X-ray photoelectron diffraction simulations using a real-space approach are Shown to accurately produce the extraordinarily detailed photoelectron diffraction pattern from Cu{111} at an electron kinetic energy of 523.5 eV. These same simulations show that most sensitivity is obtained when using low energy electrons at high angular resolution Structural differences are observed to be greatest around a kinetic energy of similar to 100 eV and many of the features observed in the photoelectron diffraction patterns may be directly related to phenomena observed in low energy electron diffraction patterns from the same Surface. For Cu{100}. simulations of buckled surfaces with a Mn overlayer predict that low energy photoelectron diffraction can easily discriminate chemical and structural differences. Even the effects of the relaxed Surface of Cu{100} is indeed observable along azimuthal scans around a kinetic energy of 100 eV Our results show that low energy photoelectron diffraction is extremely sensitive to changes in Surface Structure If high resolution patterns are acquired. © 2009, American Institute of Physics
Managing a High-Performance Medicaid Program
Today, the Medicaid program is evolving more rapidly than at any other time in its fifty-year history. States and the federal government are working to maximize the value and efficiency of Medicaid by reforming payment to reward value over volume, integrating effective care coordination across payers, and streamlining key processes like eligibility determinations across coverage programs. Underpinning a state’s ability to implement these reforms is its capacity to manage its Medicaid program effectively and efficiently.
This paper discusses key responsibilities that the federal government and states hold for managing the Medicaid program and identifies the key issues and challenges states face as they transform the way they do business and achieve key national goals. The paper relies on an extensive review of federal and state responsibilities drawn from statute, regulation, and relevant literature, coupled with discussions with six current Medicaid directors, who graciously volunteered their time and observations on the opportunities and challenges they face in administering their state Medicaid programs
A multimodal approach to understanding motor impairment and disability after stroke
Many different measures have been found to be related to behavioral outcome after stroke. Preclinical studies emphasize the importance of brain injury and neural function. However, the measures most important to human outcomes remain uncertain, in part because studies often examine one measure at a time or enroll only mildly impaired patients. The current study addressed this by performing multimodal evaluation in a heterogeneous population. Patients (n = 36) with stable arm paresis 3-6 months post-stroke were assessed across 6 categories of measures related to stroke outcome: demographics/medical history, cognitive/mood status, genetics, neurophysiology, brain injury, and cortical function. Multivariate modeling identified measures independently related to an impairment-based outcome (arm Fugl-Meyer motor score). Analyses were repeated (1) identifying measures related to disability (modified Rankin Scale score), describing independence in daily functions and (2) using only patients with mild deficits. Across patients, greater impairment was related to measures of injury (reduced corticospinal tract integrity) and neurophysiology (absence of motor evoked potential). In contrast, (1) greater disability was related to greater injury and poorer cognitive status (MMSE score) and (2) among patients with mild deficits, greater impairment was related to cortical function (greater contralesional motor/premotor cortex activation). Impairment after stroke is most related to injury and neurophysiology, consistent with preclinical studies. These relationships vary according to the patient subgroup or the behavioral endpoint studied. One potential implication of these results is that choice of biomarker or stratifying variable in a clinical stroke study might vary according to patient characteristics. © 2014 Springer-Verlag Berlin Heidelberg
Gene expression and matrix turnover in overused and damaged tendons
Chronic, painful conditions affecting tendons, frequently known as tendinopathy, are very common types of sporting injury. The tendon extracellular matrix is substantially altered in tendinopathy, and these changes are thought to precede and underlie the clinical condition. The tendon cell response to repeated minor injuries or “overuse” is thought to be a major factor in the development of tendinopathy. Changes in matrix turnover may also be effected by the cellular response to physical load, altering the balance of matrix turnover and changing the structure and composition of the tendon. Matrix turnover is relatively high in tendons exposed to high mechanical demands, such as the supraspinatus and Achilles, and this is thought to represent either a repair or tissue maintenance function. Metalloproteinases are a large family of enzymes capable of degrading all of the tendon matrix components, and these are thought to play a major role in the degradation of matrix during development, adaptation and repair. It is proposed that some metalloproteinase enzymes are required for the health of the tendon, and others may be damaging, leading to degeneration of the tissue. Further research is required to investigate how these enzyme activities are regulated in tendon and altered in tendinopathy. A profile of all the metalloproteinases expressed and active in healthy and degenerate tendon is required and may lead to the development of new drug therapies for these common and debilitating sports injuries
Tendinopathy—from basic science to treatment
Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy
Observation of inhibited electron-ion coupling in strongly heated graphite
Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter
Cooperative secretions facilitate host range expansion in bacteria
The majority of emergent human pathogens are zoonotic in origin, that is, they can transmit to humans from other animals. Understanding the factors underlying the evolution of pathogen host range is therefore of critical importance in protecting human health. There are two main evolutionary routes to generalism: organisms can tolerate multiple environments or they can modify their environments to forms to which they are adapted. Here we use a combination of theory and a phylogenetic comparative analysis of 191 pathogenic bacterial species to show that bacteria use cooperative secretions that modify their environment to extend their host range and infect multiple host species. Our results suggest that cooperative secretions are key determinants of host range in bacteria, and that monitoring for the acquisition of secreted proteins by horizontal gene transfer can help predict emerging zoonoses
Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids
Chromosome pairing in the meiotic metaphase I of wheatrye
hybrids has been characterized by sequential genomic
and fluorescent in situ hybridization allowing not only the
discrimination of wheat and rye chromosomes, but also the
identification of the individual wheat and rye chromosome
arms involved in the chromosome associations. The majority
of associations (93.8%) were observed between the wheat
chromosomes. The largest number of wheat-wheat chromosome
associations (53%) was detected between the A and D
genomes, while the frequency of B-D and A-B associations
was significantly lower (32 and 8%, respectively). Among the
A-D chromosome associations, pairing between the 3AL and
3DL arms was observed with the highest frequency, while
the most frequent of all the chromosome associations (0.113/
cell) was found to be the 3DS-3BS. Differences in the pairing
frequency of the individual chromosome arms of wheat-rye
hybrids have been discussed in relation to the homoeologous
relationships between the constituent genomes of
hexaploid wheat
Inactivation of Poxviruses by Upper-Room UVC Light in a Simulated Hospital Room Environment
In the event of a smallpox outbreak due to bioterrorism, delays in vaccination programs may lead to significant secondary transmission. In the early phases of such an outbreak, transmission of smallpox will take place especially in locations where infected persons may congregate, such as hospital emergency rooms. Air disinfection using upper-room 254 nm (UVC) light can lower the airborne concentrations of infective viruses in the lower part of the room, and thereby control the spread of airborne infections among room occupants without exposing occupants to a significant amount of UVC. Using vaccinia virus aerosols as a surrogate for smallpox we report on the effectiveness of air disinfection, via upper-room UVC light, under simulated real world conditions including the effects of convection, mechanical mixing, temperature and relative humidity. In decay experiments, upper-room UVC fixtures used with mixing by a conventional ceiling fan produced decreases in airborne virus concentrations that would require additional ventilation of more than 87 air changes per hour. Under steady state conditions the effective air changes per hour associated with upper-room UVC ranged from 18 to 1000. The surprisingly high end of the observed range resulted from the extreme susceptibility of vaccinia virus to UVC at low relative humidity and use of 4 UVC fixtures in a small room with efficient air mixing. Increasing the number of UVC fixtures or mechanical ventilation rates resulted in greater fractional reduction in virus aerosol and UVC effectiveness was higher in winter compared to summer for each scenario tested. These data demonstrate that upper-room UVC has the potential to greatly reduce exposure to susceptible viral aerosols. The greater survival at baseline and greater UVC susceptibility of vaccinia under winter conditions suggest that while risk from an aerosol attack with smallpox would be greatest in winter, protective measures using UVC may also be most efficient at this time. These data may also be relevant to influenza, which also has improved aerosol survival at low RH and somewhat similar sensitivity to UVC
Social, Structural and Behavioral Determinants of Overall Health Status in a Cohort of Homeless and Unstably Housed HIV-Infected Men
Background: Previous studies indicate multiple influences on the overall health of HIV-infected persons; however, few assess and rank longitudinal changes in social and structural barriers that are disproportionately found in impoverished populations. We empirically ranked factors that longitudinally impact the overall health status of HIV-infected homeless and unstably housed men. Methods and Findings: Between 2002 and 2008, a cohort of 288 HIV+ homeless and unstably housed men was recruited and followed over time. The population was 60 % non-Caucasian and the median age was 41 years; 67 % of study participants reported recent drug use and 20 % reported recent homelessness. At baseline, the median CD4 cell count was 349 cells/ml and 18 % of eligible persons (CD4,350) took antiretroviral therapy (ART). Marginal structural models were used to estimate the population-level effects of behavioral, social, and structural factors on overall physical and mental health status (measured by the SF-36), and targeted variable importance (tVIM) was used to empirically rank factors by their influence. After adjusting for confounding, and in order of their influence, the three factors with the strongest negative effects on physical health were unmet subsistence needs, Caucasian race, and no reported source of instrumental support. The three factors with the strongest negative effects on mental health were unmet subsistence needs, not having a close friend/confidant, and drug use. ART adherence.90 % ranked 5th for its positive influence on mental health, and viral loa
- …