567 research outputs found

    Harmonic Allocation of Authorship Credit: Source-Level Correction of Bibliometric Bias Assures Accurate Publication and Citation Analysis

    Get PDF
    Authorship credit for multi-authored scientific publications is routinely allocated either by issuing full publication credit repeatedly to all coauthors, or by dividing one credit equally among all coauthors. The ensuing inflationary and equalizing biases distort derived bibliometric measures of merit by systematically benefiting secondary authors at the expense of primary authors. Here I show how harmonic counting, which allocates credit according to authorship rank and the number of coauthors, provides simultaneous source-level correction for both biases as well as accommodating further decoding of byline information. I also demonstrate large and erratic effects of counting bias on the original h-index, and show how the harmonic version of the h-index provides unbiased bibliometric ranking of scientific merit while retaining the original's essential simplicity, transparency and intended fairness. Harmonic decoding of byline information resolves the conundrum of authorship credit allocation by providing a simple recipe for source-level correction of inflationary and equalizing bias. Harmonic counting could also offer unrivalled accuracy in automated assessments of scientific productivity, impact and achievement

    A Retrospective Survey of Research Design and Statistical Analyses in Selected Chinese Medical Journals in 1998 and 2008

    Get PDF
    BACKGROUND: High quality clinical research not only requires advanced professional knowledge, but also needs sound study design and correct statistical analyses. The number of clinical research articles published in Chinese medical journals has increased immensely in the past decade, but study design quality and statistical analyses have remained suboptimal. The aim of this investigation was to gather evidence on the quality of study design and statistical analyses in clinical researches conducted in China for the first decade of the new millennium. METHODOLOGY/PRINCIPAL FINDINGS: Ten (10) leading Chinese medical journals were selected and all original articles published in 1998 (N = 1,335) and 2008 (N = 1,578) were thoroughly categorized and reviewed. A well-defined and validated checklist on study design, statistical analyses, results presentation, and interpretation was used for review and evaluation. Main outcomes were the frequencies of different types of study design, error/defect proportion in design and statistical analyses, and implementation of CONSORT in randomized clinical trials. From 1998 to 2008: The error/defect proportion in statistical analyses decreased significantly ( = 12.03, p<0.001), 59.8% (545/1,335) in 1998 compared to 52.2% (664/1,578) in 2008. The overall error/defect proportion of study design also decreased ( = 21.22, p<0.001), 50.9% (680/1,335) compared to 42.40% (669/1,578). In 2008, design with randomized clinical trials remained low in single digit (3.8%, 60/1,578) with two-third showed poor results reporting (defects in 44 papers, 73.3%). Nearly half of the published studies were retrospective in nature, 49.3% (658/1,335) in 1998 compared to 48.2% (761/1,578) in 2008. Decreases in defect proportions were observed in both results presentation ( = 93.26, p<0.001), 92.7% (945/1,019) compared to 78.2% (1023/1,309) and interpretation ( = 27.26, p<0.001), 9.7% (99/1,019) compared to 4.3% (56/1,309), some serious ones persisted. CONCLUSIONS/SIGNIFICANCE: Chinese medical research seems to have made significant progress regarding statistical analyses, but there remains ample room for improvement regarding study designs. Retrospective clinical studies are the most often used design, whereas randomized clinical trials are rare and often show methodological weaknesses. Urgent implementation of the CONSORT statement is imperative

    Nutrient Administration and Resistance Training

    Get PDF
    Skeletal muscle tissue is tightly regulated throughout our bodies by balancing its synthesis and breakdown. Many factors are known to exist that cause profound changes on the overall status of skeletal muscle, some of which include exercise, nutrition, hormonal influences and disease. Muscle hypertrophy results when protein synthesis is greater than protein breakdown. Resistance training is a popular form of exercise that has been shown to increase muscular strength and muscular hypertrophy. In general, resistance training causes a stimulation of protein synthesis as well as an increase in protein breakdown, resulting in a negative balance of protein. Providing nutrients, specifically amino acids, helps to stimulate protein synthesis and improve the overall net balance of protein. Strategies to increase the concentration and availability of amino acids after resistance exercise are of great interest and have been shown to effectively increase overall protein synthesis. [1-3] After exercise, providing carbohydrate has been shown to mildly stimulate protein synthesis while addition of free amino acids prior to and after exercise, specifically essential amino acids, causes a rapid pronounced increase in protein synthesis as well as protein balance.[1,3] Evidence exists for a dose-response relationship of infused amino acids while no specific regimen exists for optimal dosing upon ingestion. Ingestion of whole or intact protein sources (e.g., protein powders, meal-replacements) has been shown to cause similar improvements in protein balance after resistance exercise when compared to free amino acid supplements. Future research should seek to determine optimal dosing of ingested intact amino acids in addition to identifying the cellular mechanistic machinery (e.g. transcriptional and translational mechanisms) for causing the increase in protein synthesis

    Cell-Specific Monitoring of Protein Synthesis In Vivo

    Get PDF
    Analysis of general and specific protein synthesis provides important information, relevant to cellular physiology and function. However, existing methodologies, involving metabolic labelling by incorporation of radioactive amino acids into nascent polypeptides, cannot be applied to monitor protein synthesis in specific cells or tissues, in live specimens. We have developed a novel approach for monitoring protein synthesis in specific cells or tissues, in vivo. Fluorescent reporter proteins such as GFP are expressed in specific cells and tissues of interest or throughout animals using appropriate promoters. Protein synthesis rates are assessed by following fluorescence recovery after partial photobleaching of the fluorophore at targeted sites. We evaluate the method by examining protein synthesis rates in diverse cell types of live, wild type or mRNA translation-defective Caenorhabditis elegans animals. Because it is non-invasive, our approach allows monitoring of protein synthesis in single cells or tissues with intrinsically different protein synthesis rates. Furthermore, it can be readily implemented in other organisms or cell culture systems

    Skeletal Muscle Myofibrillar and Sarcoplasmic Protein Synthesis Rates Are Affected Differently by Altitude-Induced Hypoxia in Native Lowlanders

    Get PDF
    As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O2. With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-13C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7–9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041±0.018 at sea-level to 0.080±0.018%⋅hr−1 (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052±0.019 at sea-level to 0.059±0.010%⋅hr−1 (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51±0.21 at sea level to 2.73±0.13 µmol⋅kg−1⋅min−1 (p = 0.05) at high altitude and synthesis rate similar; 2.24±0.20 at sea level and 2.43±0.13 µmol⋅kg−1⋅min−1 (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure

    Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria

    Get PDF
    The malaria mosquito Anopheles gambiae sensu stricto is mainly guided by human odour components to find its blood host. Skin bacteria play an important role in the production of human body odour and when grown in vitro, skin bacteria produce volatiles that are attractive to A. gambiae. The role of single skin bacterial species in the production of volatiles that mediate the host-seeking behaviour of mosquitoes has remained largely unknown and is the subject of the present study. Headspace samples were taken to identify volatiles that mediate this behaviour. These volatiles could be used as mosquito attractants or repellents. Five commonly occurring species of skin bacteria were tested in an olfactometer for the production of volatiles that attract A. gambiae. Odour blends produced by some bacterial species were more attractive than blends produced by other species. In contrast to odours from the other bacterial species tested, odours produced by Pseudomonas aeruginosa were not attractive to A. gambiae. Headspace analysis of bacterial volatiles in combination with behavioural assays led to the identification of six compounds that elicited a behavioural effect in A. gambiae. Our results provide, to our knowledge, the first evidence for a role of selected bacterial species, common on the human skin, in determining the attractiveness of humans to malaria mosquitoes. This information will be used in the further development of a blend of semiochemicals for the manipulation of mosquito behaviour

    The Terneuzen Birth Cohort. Longer exclusive breastfeeding duration is associated with leaner body mass and a healthier diet in young adulthood

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breastfeeding (BF) is protective against overweight and is associated with dietary behaviour. The aims of our study were to assess the relationship between exclusive BF duration and BMI, waist circumference (WC) and waist-hip ratio (WHR) at adulthood, and to study whether dietary behaviour could explain the relationship between BF duration and the proxies of fat mass.</p> <p>Methods</p> <p>In 2004-2005, 822 subjects from the Terneuzen Birth Cohort (n = 2,604), aged 18-28 years, filled in postal questionnaires including sociodemographic factors and aspects of dietary behaviour (dietary pattern, and consumption of fruit and vegetables, snacks, sweetened beverages and alcohol); 737 subjects also underwent anthropometric measurements of weight, height, and waist and hip circumference. The relationship between exclusive BF duration and dietary outcomes was investigated by logistic regression analysis. The relationships of BF duration with the anthropometric measures were investigated by linear regression analyses. All results were corrected for age, gender and possible confounders. Finally, regression analyses were performed to investigate if diet factors had a mediating effect on the relationship between BF duration and fat mass.</p> <p>Results</p> <p>A significant inverse dose-response relationship of BF duration was found for BMI (β-0.13, SE 0.06), WC (β-0.39, SE 0.18) and WHR (β-0.003, SE 0.001), after correction for age, gender and confounders. The odds ratio (OR) of exclusive BF duration in months for a breakfast frequency of at least 5 times a week was 1.16 (95%CI 1.06-1.27), and for snack consumption of less than twice a week was 1.15 (95%CI 1.06-1.25). Both ORs were corrected for age, gender and confounders. For other dietary outcomes, the results point in the same direction, i.e. a positive relationship with BF duration, but these were not statistically significant. A mediating effect of the diet factors on the association between BF and anthropometric outcomes was not shown.</p> <p>Conclusions</p> <p>Exclusive BF duration had a significant inverse dose-response relationship with BMI, WC and WHR at young adulthood. BF duration was positively related to a healthier diet at adulthood, but this did not explain the protective effect of BF against body fat. Our results underline the recommendation of the WHO to exclusively breastfeed for 6 months or longer.</p

    MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion

    Get PDF
    Mitochondria are double-membraned organelles with variable shapes influenced by metabolic conditions, developmental stage, and environmental stimuli. Their dynamic morphology is a result of regulated and balanced fusion and fission processes. Fusion is crucial for the health and physiological functions of mitochondria, including complementation of damaged mitochondrial DNAs and the maintenance of membrane potential. Mitofusins are dynamin-related GTPases that are essential for mitochondrial fusion. They are embedded in the mitochondrial outer membrane and thought to fuse adjacent mitochondria via combined oligomerization and GTP hydrolysis. However, the molecular mechanisms of this process remain unknown. Here we present crystal structures of engineered human MFN1 containing the GTPase domain and a helical domain during different stages of GTP hydrolysis. The helical domain is composed of elements from widely dispersed sequence regions of MFN1 and resembles the ‘neck’ of the bacterial dynamin-like protein. The structures reveal unique features of its catalytic machinery and explain how GTP binding induces conformational changes to promote GTPase domain dimerization in the transition state. Disruption of GTPase domain dimerization abolishes the fusogenic activity of MFN1. Moreover, a conserved aspartate residue trigger was found to affect mitochondrial elongation in MFN1, probably through a GTP-loading-dependent domain rearrangement. Thus, we propose a mechanistic model for MFN1-mediated mitochondrial tethering, and our results shed light on the molecular basis of mitochondrial fusion and mitofusin-related human neuromuscular disorders

    A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of <it>Eucalyptus </it>using Single Feature Polymorphism (SFP) markers.</p> <p>Results</p> <p>SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. <it>In silico </it>validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the <it>Eucalyptus grandis </it>genome.</p> <p>Conclusions</p> <p>The <it>Eucalyptus </it>1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on <it>Eucalyptus </it>maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping with a concurrent objective of reducing microarray costs. HIgh-density gene-rich maps represent a powerful resource to assist gene discovery endeavors when used in combination with QTL and association mapping and should be especially valuable to assist the assembly of reference genome sequences soon to come for several plant and animal species.</p
    corecore