3,830 research outputs found

    A map of the class III region of the sheep major histocompatibilty complex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The central, or class III, region of the major histocompatibility complex (MHC) is an important gene rich sub-region of the MHC of mammals and contains many loci implicated in disease processes and potential productivity traits. As a prelude to identifying MHC loci associated with productivity traits in sheep, we have used BAC and cosmid libraries of genomic DNA to generate a physical map of the sheep MHC class III region. This map will facilitate association studies and provide insights into the distribution of recombination events in this chromosomal segment.</p> <p>Results</p> <p>Twenty eight sheep genes were identified in 10 BAC clones which spanned approximately 700 kbp of a chromosomal region adjacent to the class I region of the sheep MHC and which therefore covers most, if not all, of the class III of the sheep MHC. The relative positions of 17 of these genes was established as well as two additional groups of genes for which the intragroup order was not known. Cosmid mapping permitted a more detailed mapping of the complement genes present in the class III and showed a local inversion (relative to humans) of one pair of the duplicated complement C4 and CYP21 loci. A panel of 26 single nucleotide polymorphisms (SNPs) was identified in 10 loci, covering ≈600 kbp of the mapped region.</p> <p>Conclusion</p> <p>This report provides a physical map covering ≈700 kbp of the class III of the sheep MHC together with a SNP panel which will facilitate disease and productivity association studies. The presence of a local inversion (relative to humans) of one pair of the duplicated C4 and CYP21 loci and a previously described dinucleotide tandem repeat locus (BfMs) has been located within an intron of the SK12VL gene.</p

    Spatial, Temporal, and Human-Induced Variations in Suspended Sediment Concentration in the Surface Waters of the Yangtze Estuary and Adjacent Coastal Areas

    Get PDF
    To delineate temporal and spatial variations in suspended sediment concentration (SSC) in the Yangtze (Changjiang) Estuary and adjacent coastal waters, surface-water samples were taken twice daily from 10 stations over periods ranging from 2 to 12 years (total number of samples \u3e 28,000). Synoptic measurements in 2009 showed an increase in surface SSC from 0.058 g/l in the upper sections of the estuary to similar to 0.6 g/l at the Yangtze River turbidity maximum at the river mouth, decreasing seaward to 0.057 g/l. Annual periodicities reflect variations in the Yangtze discharge, which affect the horizontal distribution and transport of SSC, and seasonal winds, which result in vertical resuspension and mixing. Over the past 10-20 years, annual surface SSC in the lower Yangtze River and the upper estuary has decreased by 55%, due mainly to dam construction in the upper and middle reaches of the river. The 20-30% decrease in mean surface SSC in the lower estuary and adjacent coastal waters over the same period presumably reflects sediment resuspension, in part due to erosion of the subaqueous Yangtze Delta. SSCs in the estuary and adjacent coastal waters are expected to continue to decline as new dams are constructed in the Yangtze basin and as erosion of the subaqueous delta slows in coming decades

    The effect of mycelial morphology on lycopene fermentaton

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Visualizing landscapes of the superconducting gap in heterogeneous superconductor thin films: geometric influences on proximity effects

    Full text link
    The proximity effect is a central feature of superconducting junctions as it underlies many important applications in devices and can be exploited in the design of new systems with novel quantum functionality. Recently, exotic proximity effects have been observed in various systems, such as superconductor-metallic nanowires and graphene-superconductor structures. However, it is still not clear how superconducting order propagates spatially in a heterogeneous superconductor system. Here we report intriguing influences of junction geometry on the proximity effect for a 2D heterogeneous superconductor system comprised of 2D superconducting islands on top of a surface metal. Depending on the local geometry, the superconducting gap induced in the surface metal region can either be confined to the boundary of the superconductor, in which the gap decays within a short distance (~ 15 nm), or can be observed nearly uniformly over a distance of many coherence lengths due to non-local proximity effects.Comment: 17 pages, 4 figure

    Expressions of glutathione S-transferase alpha, mu, and pi in brains of medically intractable epileptic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glutathione S-transferases (GSTs) play an important role in metabolizing anti-epileptic drugs (AEDs) in liver. Expressions of GSTs in brain, which may result in poor efficacy of AEDs, have not been well studied. Using clinical cortex specimen from 32 intractable epileptic subjects and 8 non-epileptic controls, the present study investigated the correlation between GSTs and intractable epilepsy.</p> <p>Results</p> <p>Three different GST isoforms (α, μ, and π) were detected with immunohistochemistry. GST-α expression was not seen in any cortex specimens. Sixty three percent (63%) of control and 53% of intractible epileptic specimens showed GST-μ immunoreactivity. No significant difference in intensity of GST-μ staining was observed between these two groups. GST-π expression was found in endothelial cells and glial cells/astrocytes. Fifty percent (50%) of the control patients and 66% of the epileptic patients were GST-π positive. The grading of epileptic patients was significantly higher than that of control patients (<it>p </it>< 0.01).</p> <p>Conclusion</p> <p>High levels of GST-π in endothelial cells and glial cells/astrocyte correlate to medical intractable epilepsy, suggesting that GST-π contributes to resistance to AED treatment.</p

    Protein dynamics and conformational selection in bidirectional signal transduction

    Get PDF
    Protein conformational dynamics simultaneously allow promiscuity and specificity in binding. The multiple conformations of the free EphA4 ligand-binding domain observed in two new EphA4 crystal structures provide a unique insight into the conformational dynamics of EphA4 and its signaling pathways. The heterogeneous ensemble and loop dynamics explain how the EphA4 receptor is able to bind multiple A- and B-ephrin ligands and small molecules via conformational selection, which helps to fine-tune cellular signal response in both receptor and ligand cells

    Using electric current to surpass the microstructure breakup limit

    Get PDF
    The elongated droplets and grains can break up into smaller ones. This process is driven by the interfacial free energy minimization, which gives rise to a breakup limit. We demonstrated in this work that the breakup limit can be overpassed drastically by using electric current to interfere. Electric current free energy is dependent on the microstructure configuration. The breakup causes the electric current free energy to reduce in some cases. This compensates the increment of interfacial free energy during breaking up and enables the processing to achieve finer microstructure. With engineering practical electric current parameters, our calculation revealed a significant increment of the obtainable number of particles, showing electric current a powerful microstructure refinement technology. The calculation is validated by our experiments on the breakup of Fe3C-plates in Fe matrix. Furthermore, there is a parameter range that electric current can drive spherical particles to split into smaller ones

    Patellar tendon ossification after partial patellectomy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Patellar tendon ossification is a rare pathology that may be seen as a complication after sleeve fractures of the tibial tuberosity, total patellectomy during arthroplasty, intramedullary nailing of tibial fractures, anterior cruciate ligament reconstruction with patellar tendon autograft and knee injury without fracture. However, its occurrence after partial patellectomy surgery has never been reported in the literature.</p> <p>Case presentation</p> <p>We present the case of a 35-year-old Turkish man with a comminuted inferior patellar pole fracture that was treated with partial patellectomy. During the follow-up period, his patellar tendon healed with ossification and then ruptured from the inferior attachment to the tibial tubercle. The ossification was excised and the tendon was subsequently repaired.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first report of patellar tendon ossification occurring after partial patellectomy. Orthopaedic surgeons are thus cautioned to be conscious of this rare complication after partial patellectomy.</p

    Accounting Problems Under the Excess Profits Tax

    Get PDF
    DNA vaccines based on subunits from pathogens have several advantages over other vaccine strategies. DNA vaccines can easily be modified, they show good safety profiles, are stable and inexpensive to produce, and the immune response can be focused to the antigen of interest. However, the immunogenicity of DNA vaccines which is generally quite low needs to be improved. Electroporation and co-delivery of genetically encoded immune adjuvants are two strategies aiming at increasing the efficacy of DNA vaccines. Here, we have examined whether targeting to antigen-presenting cells (APC) could increase the immune response to surface envelope glycoprotein (Env) gp120 from Human Immunodeficiency Virus type 1 (HIV- 1). To target APC, we utilized a homodimeric vaccine format denoted vaccibody, which enables covalent fusion of gp120 to molecules that can target APC. Two molecules were tested for their efficiency as targeting units: the antibody-derived single chain Fragment variable (scFv) specific for the major histocompatilibility complex (MHC) class II I-E molecules, and the CC chemokine ligand 3 (CCL3). The vaccines were delivered as DNA into muscle of mice with or without electroporation. Targeting of gp120 to MHC class II molecules induced antibodies that neutralized HIV-1 and that persisted for more than a year after one single immunization with electroporation. Targeting by CCL3 significantly increased the number of HIV-1 gp120-reactive CD8(+) T cells compared to non-targeted vaccines and gp120 delivered alone in the absence of electroporation. The data suggest that chemokines are promising molecular adjuvants because small amounts can attract immune cells and promote immune responses without advanced equipment such as electroporation.Funding Agencies|Research Council of Norway; Odd Fellow</p

    The Microscopic Origin of Residual Stress for Flat Self-Actuating Piezoelectric Cantilevers

    Get PDF
    In this study, flat piezoelectric microcantilevers were fabricated under low-stress Pb(Zr0.52Ti0.48)O3 (PZT) film conditions. They were analyzed using the Raman spectrum and wafer curvature methods. Based on the residual stress analysis, we found that a thickness of 1 μm was critical, since stress relaxation starts to occur at greater thicknesses, due to surface roughening. The (111) preferred orientation started to decrease when the film thickness was greater than 1 μm. The d33 value was closely related to the stress relaxation associated with the preferred orientation changes. We examined the harmonic response at different PZT cantilever lengths and obtained a 9.4-μm tip displacement at 3 Vp-p at 1 kHz. These analyses can provide a platform for the reliable operation of piezoelectric microdevices, potentially nanodevice when one needs to have simultaneous control of the residual stress and the piezoelectric properties
    corecore