3,151 research outputs found

    How to realize a robust practical Majorana chain in a quantum dot-superconductor linear array

    Full text link
    Semiconducting nanowires in proximity to superconductors are promising experimental systems for Majorana fermions, which may ultimately be used as building blocks for topological quantum computers. A serious challenge in the experimental realization of the Majorana fermions is the supression of topological superconductivity by disorder. We show that Majorana fermions protected by a robust topological gap can occur at the ends of a chain of quantum dots connected by s-wave superconductors. In the appropriate parameter regime, we establish that the quantum dot/superconductor system is equivalent to a 1D Kitaev chain, which can be tuned to be in a robust topological phase with Majorana end modes even in the case where the quantum dots and superconductors are both strongly disordered. Such a spin-orbit coupled quantum dot - s-wave superconductor array provides an ideal experimental platform for the observation of non-Abelian Majorana modes.Comment: 8 pages; 3 figures; version 2: Supplementary material updated to include more general proof for localized Majorana fermion

    Is the biology of breast cancer changing? A study of hormone receptor status 1984-1986 and 1996-1997

    Get PDF
    Using archived tumours, those from 1984-1986 and 1996-1997 underwent immunohistochemistry for hormone receptors and grade analysis. A significant shift towards more ER-positive and low-grade disease was found; this appears to reflect screening practices, but could still influence survival

    Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans

    Get PDF
    Despite broad agreement that the Americas were initially populated via Beringia, the land bridge that connected far northeast Asia with northwestern North America during the Pleistocene epoch, when and how the peopling of the Americas occurred remains unresolved. Analyses of human remains from Late Pleistocene Alaska are important to resolving the timing and dispersal of these populations. The remains of two infants were recovered at Upward Sun River (USR), and have been dated to around 11.5 thousand years ago (ka). Here, by sequencing the USR1 genome to an average coverage of approximately 17 times, we show that USR1 is most closely related to Native Americans, but falls basal to all previously sequenced contemporary and ancient Native Americans. As such, USR1 represents a distinct Ancient Beringian population. Using demographic modelling, we infer that the Ancient Beringian population and ancestors of other Native Americans descended from a single founding population that initially split from East Asians around 36 ± 1.5 ka, with gene flow persisting until around 25 ± 1.1 ka. Gene flow from ancient north Eurasians into all Native Americans took place 25–20 ka, with Ancient Beringians branching off around 22–18.1 ka. Our findings support a long-term genetic structure in ancestral Native Americans, consistent with the Beringian ‘standstill model’. We show that the basal northern and southern Native American branches, to which all other Native Americans belong, diverged around 17.5–14.6 ka, and that this probably occurred south of the North American ice sheets. We also show that after 11.5 ka, some of the northern Native American populations received gene flow from a Siberian population most closely related to Koryaks, but not Palaeo-Eskimos, Inuits or Kets, and that Native American gene flow into Inuits was through northern and not southern Native American groups. Our findings further suggest that the far-northern North American presence of northern Native Americans is from a back migration that replaced or absorbed the initial founding population of Ancient Beringians

    Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22

    Get PDF
    A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, α = 0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD = 3.60, α = 0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, α = 0.29; dominant HLOD = 3.03, α = 0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, α = 0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated. © 2012 Cicek et al

    Nutrition, lifestyle and colorectal cancer incidence: a prospective investigation of 10 998 vegetarians and non-vegetarians in the United Kingdom

    Get PDF
    In a cohort of 10998 men and women, 95 incident cases of colorectal cancer were recorded after 17 years. Risk increased in association with smoking, alcohol, and white bread consumption, and decreased with frequent consumption of fruit. The relative risk in vegetarians compared with nonvegetarians was 0.85 (95% CI: 0.55-1.32)

    Reconstructing ‘the Alcoholic’: Recovering from Alcohol Addiction and the Stigma this Entails

    Get PDF
    Public perception of alcohol addiction is frequently negative, whilst an important part of recovery is the construction of a positive sense of self. In order to explore how this might be achieved, we investigated how those who self-identify as in recovery from alcohol problems view themselves and their difficulties with alcohol and how they make sense of others’ responses to their addiction. Semi-structured interviews with six individuals who had been in recovery between 5 and 35 years and in contact with Alcoholics Anonymous were analysed using Interpretative Phenomenological Analysis. The participants were acutely aware of stigmatising images of ‘alcoholics’ and described having struggled with a considerable dilemma in accepting this identity themselves. However, to some extent they were able to resist stigma by conceiving of an ‘aware alcoholic self’ which was divorced from their previously unaware self and formed the basis for a new more knowing and valued identity

    Shaping Embodied Neural Networks for Adaptive Goal-directed Behavior

    Get PDF
    The acts of learning and memory are thought to emerge from the modifications of synaptic connections between neurons, as guided by sensory feedback during behavior. However, much is unknown about how such synaptic processes can sculpt and are sculpted by neuronal population dynamics and an interaction with the environment. Here, we embodied a simulated network, inspired by dissociated cortical neuronal cultures, with an artificial animal (an animat) through a sensory-motor loop consisting of structured stimuli, detailed activity metrics incorporating spatial information, and an adaptive training algorithm that takes advantage of spike timing dependent plasticity. By using our design, we demonstrated that the network was capable of learning associations between multiple sensory inputs and motor outputs, and the animat was able to adapt to a new sensory mapping to restore its goal behavior: move toward and stay within a user-defined area. We further showed that successful learning required proper selections of stimuli to encode sensory inputs and a variety of training stimuli with adaptive selection contingent on the animat's behavior. We also found that an individual network had the flexibility to achieve different multi-task goals, and the same goal behavior could be exhibited with different sets of network synaptic strengths. While lacking the characteristic layered structure of in vivo cortical tissue, the biologically inspired simulated networks could tune their activity in behaviorally relevant manners, demonstrating that leaky integrate-and-fire neural networks have an innate ability to process information. This closed-loop hybrid system is a useful tool to study the network properties intermediating synaptic plasticity and behavioral adaptation. The training algorithm provides a stepping stone towards designing future control systems, whether with artificial neural networks or biological animats themselves

    Personalized Exposure Assessment: Promising Approaches for Human Environmental Health Research

    Get PDF
    New technologies and methods for assessing human exposure to chemicals, dietary and lifestyle factors, infectious agents, and other stressors provide an opportunity to extend the range of human health investigations and advance our understanding of the relationship between environmental exposure and disease. An ad hoc Committee on Environmental Exposure Technology Development was convened to identify new technologies and methods for deriving personalized exposure measurements for application to environmental health studies. The committee identified a “toolbox” of methods for measuring external (environmental) and internal (biologic) exposure and assessing human behaviors that influence the likelihood of exposure to environmental agents. The methods use environmental sensors, geographic information systems, biologic sensors, toxicogenomics, and body burden (biologic) measurements. We discuss each of the methods in relation to current use in human health research; specific gaps in the development, validation, and application of the methods are highlighted. We also present a conceptual framework for moving these technologies into use and acceptance by the scientific community. The framework focuses on understanding complex human diseases using an integrated approach to exposure assessment to define particular exposure–disease relationships and the interaction of genetic and environmental factors in disease occurrence. Improved methods for exposure assessment will result in better means of monitoring and targeting intervention and prevention programs
    corecore