1,905 research outputs found
A Snapshot of J. L. Synge
A brief description is given of the life and influence on relativity theory
of Professor J. L. Synge accompanied by some technical examples to illustrate
his style of work
Evaluation of the impact of a school gardening intervention on children's fruit and vegetable intake: a randomised controlled trial.
Background: Current academic literature suggests that school gardening programmes can provide an interactive environment with the potential to change children’s fruit and vegetable intake. This is the first cluster randomised controlled trial (RCT) designed to evaluate whether a school gardening programme can have an effect on children’s fruit and vegetable intake.
Methods: The trial included children from 23 schools; these schools were randomised into two groups, one to receive the Royal Horticultural Society (RHS)-led intervention and the other to receive the less involved Teacher-led intervention. A 24-hour food diary (CADET) was used to collect baseline and follow-up dietary intake 18 months apart. Questionnaires were also administered to evaluate the intervention implementation.
Results: A total of 641 children completed the trial with a mean age of 8.1 years (95% CI: 8.0, 8.4). The unadjusted results from multilevel regression analysis revealed that for combined daily fruit and vegetable intake the Teacher-led group had a higher daily mean change of 8 g (95% CI: −19, 36) compared to the RHS-led group -32 g (95% CI: −60, −3). However, after adjusting for possible confounders this difference was not significant (intervention effect: −40 g, 95% CI: −88, 1; p = 0.06). The adjusted analysis of process measures identified that if schools improved their gardening score by 3 levels (a measure of school gardening involvement - the scale has 6 levels from 0 ‘no garden’ to 5 ‘community involvement’), irrespective of group allocation, children had, on average, a daily increase of 81 g of fruit and vegetable intake (95% CI: 0, 163; p = 0.05) compared to schools that had no change in gardening score.
Conclusions: This study is the first cluster randomised controlled trial designed to evaluate a school gardening intervention. The results have found very little evidence to support the claims that school gardening alone can improve children’s daily fruit and vegetable intake. However, when a gardening intervention is implemented at a high level within the school it may improve children’s daily fruit and vegetable intake by a portion. Improving children’s fruit and vegetable intake remains a challenging task
Analytical characterization and pharmacological evaluation of the new psychoactive substance 4-fluoromethylphenidate (4F-MPH) and differentiation between the (±)-threo- and (±)-erythro- diastereomers
Misuse of (±)-threo-methylphenidate (methyl-2-phenyl-2-(piperidin-2-yl)acetate; Ritalin®, MPH) has long been acknowledged, but the appearance of MPH analogs in the form of ‘research chemicals’ has only emerged in more recent years. 4-Fluoromethylphenidate (4F-MPH) is one of these recent examples and this study presents the identification and analytical characterization of two powdered 4F-MPH products that were obtained from an online vendor in 2015. Interestingly, the products appeared to have originated from two distinct batches given that one product consisted of (±)-threo-4F-MPH isomers whereas the second sample consisted of a mixture of (±)-threo and (±)-erythro 4F-MPH. Monoamine transporter studies using rat brain synaptosomes revealed that the biological activity of the 4F-MPH mixture resided with the (±)-threo- and not the (±)-erythro isomers based on higher potencies determined for blockage of dopamine uptake (IC50 4F-MPHmixture = 66 nM vs. IC50 (±)-threo = 61 nM vs. IC50 (±)-erythro = 8,528 nM) and norepinephrine uptake (IC50 4F-MPHmixture = 45 nM vs. (±)-threo = 31 nM vs. IC50 (±)-erythro = 3,779 nM). In comparison, MPH was three times less potent than (±)-threo-4F-MPH at the dopamine transporter (IC50 = 131 nM) and around 2.5-times less potent at the norepinephrine transporter (IC50 = 83 nM). Both substances were catecholamine selective with IC50 values of 8,805 nM and >10,000 nM for (±)-threo-4F-MPH and MPH at the serotonin transporter. These findings suggest that the psychostimulant properties of (±)-threo-4F-MPH might be more potent in humans than MPH
What’s in a Name? Parents’ and Healthcare Professionals’ Preferred Terminology for Pathogenic Variants in Childhood Cancer Predisposition Genes
Current literature/guidelines regarding the most appropriate term to communicate a cancer-related disease-causing germline variant in childhood cancer lack consensus. Guidelines also rarely address preferences of patients/families. We aimed to assess preferences of parents of children with cancer, genetics professionals, and pediatric oncologists towards terminology to describe a disease-causing germline variant in childhood cancer. Using semi-structured interviews we asked participants their most/least preferred terms from; ‘faulty gene,’ ‘altered gene,’ ‘gene change,’ and ‘genetic variant,’ analyzing responses with directed content analysis. Twenty-five parents, 6 genetics professionals, and 29 oncologists participated. An equal number of parents most preferred ‘gene change,’ ‘altered gene,’ or ‘genetic variant’ (n = 8/25). Parents least preferred ‘faulty gene’ (n = 18/25). Half the genetics professionals most preferred ‘faulty gene’ (n = 3/6); however this was least preferred by the remaining genetics professionals (n = 3/6). Many oncologists most preferred ‘genetic variant’ (n = 11/29) and least preferred ‘faulty gene’ (n = 19/29). Participants across all groups perceived ‘faulty gene’ as having negative connotations, potentially placing blame/guilt on parents/children. Health professionals described challenges selecting a term that was scientifically accurate, easily understood and not distressing to families. Lack of consensus highlights the need to be guided by families’ preferred terminology, while providing accurate explanations regarding implications of genetic findings
A report from the NIHR UK working group on remote trial delivery for the COVID-19 pandemic and beyond
Abstract Background Prior to the COVID-19 pandemic, the majority of clinical trial activity took place face to face within clinical or research units. The COVID-19 pandemic resulted in a significant shift towards trial delivery without in-person face-to-face contact or “Remote Trial Delivery”. The National Institute of Health Research (NIHR) assembled a Remote Trial Delivery Working Group to consider challenges and enablers to this major change in clinical trial delivery and to provide a toolkit for researchers to support the transition to remote delivery. Methods The NIHR Remote Trial Delivery Working Group evaluated five key domains of the trial delivery pathway: participant factors, recruitment, intervention delivery, outcome measurement and quality assurance. Independent surveys were disseminated to research professionals, and patients and carers, to ascertain benefits, challenges, pitfalls, enablers and examples of good practice in Remote Trial Delivery. A toolkit was constructed to support researchers, funders and governance structures in moving towards Remote Trial Delivery. The toolkit comprises a website encompassing the key principles of Remote Trial Delivery, and a repository of best practice examples and questions to guide research teams. Results The patient and carer survey received 47 respondents, 34 of whom were patients and 13 of whom were carers. The professional survey had 115 examples of remote trial delivery practice entered from across England. Key potential benefits included broader reach and inclusivity, the ability for standardisation and centralisation, and increased efficiency and patient/carer convenience. Challenges included the potential exclusion of participants lacking connectivity or digital skills, the lack of digitally skilled workforce and appropriate infrastructure, and validation requirements. Five key principles of Remote Trial Delivery were proposed: national research standards, inclusivity, validity, cost-effectiveness and evaluation of new methodologies. Conclusions The rapid changes towards Remote Trial Delivery catalysed by the COVID-19 pandemic could lead to sustained change in clinical trial delivery. The NIHR Remote Trial Delivery Working Group provide a toolkit for researchers recommending five key principles of Remote Trial Delivery and providing examples of enablers. </jats:sec
The multiple facets of the Hsp90 machine
International audienceThe Ninth International Conference on the Hsp90 Chaperone Machine concluded in October 2018, in Leysin, Switzerland. The program highlighted findings in various areas, including integrated insight into molecular mechanism of Hsp90, cochaperones, and clients’ structure and function.Heat shock protein-90 (Hsp90) is a molecular chaperone critical for the folding, stability, and activity of client proteins 1. Hsp90 and its orthologs, including bacterial HtpG, mitochondrial TRAP1 and endoplasmic reticulum Grp94, exist as dimers, hydrolyze ATP, and cycle between distinct conformational states. Hsp90 preferentially binds proteins in near native states facilitating their remodeling for protein interactions and signaling. At the 9th International Conference on the Hsp90 Chaperone Machine approximately one-third of the attendees shared their data on Hsp90 structure and function through short talks (Figure 1). Here, we distill and summarize their finding
An Integrated-Photonics Optical-Frequency Synthesizer
Integrated-photonics microchips now enable a range of advanced
functionalities for high-coherence applications such as data transmission,
highly optimized physical sensors, and harnessing quantum states, but with
cost, efficiency, and portability much beyond tabletop experiments. Through
high-volume semiconductor processing built around advanced materials there
exists an opportunity for integrated devices to impact applications cutting
across disciplines of basic science and technology. Here we show how to
synthesize the absolute frequency of a lightwave signal, using integrated
photonics to implement lasers, system interconnects, and nonlinear frequency
comb generation. The laser frequency output of our synthesizer is programmed by
a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and
traceability to the SI second. This is accomplished with a heterogeneously
integrated III/V-Si tunable laser, which is guided by dual
dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through
out-of-loop measurements of the phase-coherent, microwave-to-optical link, we
verify that the fractional-frequency instability of the integrated photonics
synthesizer matches the reference-clock instability for a 1
second acquisition, and constrain any synthesis error to while
stepping the synthesizer across the telecommunication C band. Any application
of an optical frequency source would be enabled by the precision optical
synthesis presented here. Building on the ubiquitous capability in the
microwave domain, our results demonstrate a first path to synthesis with
integrated photonics, leveraging low-cost, low-power, and compact features that
will be critical for its widespread use.Comment: 10 pages, 6 figure
Massless D-strings and moduli stabilization in type I cosmology
We consider the cosmological evolution induced by the free energy F of a gas
of maximally supersymmetric heterotic strings at finite temperature and weak
coupling in dimension D>=4. We show that F, which plays the role of an
effective potential, has minima associated to enhanced gauge symmetries, where
all internal moduli can be attracted and dynamically stabilized. Using the fact
that the heterotic/type I S-duality remains valid at finite temperature and can
be applied at each instant of a quasi-static evolution, we find in the dual
type I cosmology that all internal NS-NS and RR moduli in the closed string
sector and the Wilson lines in the open string sector can be stabilized. For
the special case of D=6, the internal volume modulus remains a flat direction,
while the dilaton is stabilized. An essential role is played by light D-string
modes wrapping the internal manifold and whose contribution to the free energy
cannot be omitted, even when the type I string is at weak coupling. As a
result, the order of magnitude of the internal radii expectation values on the
type I side is (lambda_I alpha')^{1/2}, where lambda_I is the ten-dimensional
string coupling. The non-perturbative corrections to the type I free energy can
alternatively be described as effects of "thermal E1-instantons", whose
worldsheets wrap the compact Euclidean time cycle.Comment: 39 pages, 1 figur
- …