56 research outputs found
Intramural esophagic hematoma secondary to coumarinic anticoagulation: a case report
Esophagic Intramural Hematoma is an uncommon clinical condition, with a prognosis which is essentially benign. On most cases, a predisposing or precipitating factor may be seen, with the most common ones being the history of esophagic instrumentation, food impactations and thrombocytopenia. In the following manuscript, the authors present the case of a 54-years-old male with history of valve replacement surgery, who was treated at the Clinica Cardiovascular (Medellin, Colombia), with a clinical case of Intramural Esophagic Hematoma that was later confirmed to be due to a Coumarinic overanticoagulation. On this case, it is evidenced that Intramural Esophagic Hematoma is an unrecognized complication of Courmarinic anticoagulation therapy
Complete Genome Viral Phylogenies Suggests the Concerted Evolution of Regulatory Cores and Accessory Satellites
We consider the concerted evolution of viral genomes in four families of DNA viruses. Given the high rate of horizontal gene transfer among viruses and their hosts, it is an open question as to how representative particular genes are of the evolutionary history of the complete genome. To address the concerted evolution of viral genes, we compared genomic evolution across four distinct, extant viral families. For all four viral families we constructed DNA-dependent DNA polymerase-based (DdDp) phylogenies and in addition, whole genome sequence, as quantitative descriptions of inter-genome relationships. We found that the history of the polymerase gene was highly predictive of the history of the genome as a whole, which we explain in terms of repeated, co-divergence events of the core DdDp gene accompanied by a number of satellite, accessory genetic loci. We also found that the rate of gene gain in baculovirus and poxviruses proceeds significantly more quickly than the rate of gene loss and that there is convergent acquisition of satellite functions promoting contextual adaptation when distinct viral families infect related hosts. The congruence of the genome and polymerase trees suggests that a large set of viral genes, including polymerase, derive from a phylogenetically conserved core of genes of host origin, secondarily reinforced by gene acquisition from common hosts or co-infecting viruses within the host. A single viral genome can be thought of as a mutualistic network, with the core genes acting as an effective host and the satellite genes as effective symbionts. Larger virus genomes show a greater departure from linkage equilibrium between core and satellites functions
Promoting advance planning for health care and research among older adults: A randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Family members are often required to act as substitute decision-makers when health care or research participation decisions must be made for an incapacitated relative. Yet most families are unable to accurately predict older adult preferences regarding future health care and willingness to engage in research studies. Discussion and documentation of preferences could improve proxies' abilities to decide for their loved ones. This trial assesses the efficacy of an advance planning intervention in improving the accuracy of substitute decision-making and increasing the frequency of documented preferences for health care and research. It also investigates the financial impact on the healthcare system of improving substitute decision-making.</p> <p>Methods/Design</p> <p>Dyads (<it>n </it>= 240) comprising an older adult and his/her self-selected proxy are randomly allocated to the experimental or control group, after stratification for type of designated proxy and self-report of prior documentation of healthcare preferences. At baseline, clinical and research vignettes are used to elicit older adult preferences and assess the ability of their proxy to predict those preferences. Responses are elicited under four health states, ranging from the subject's current health state to severe dementia. For each state, we estimated the public costs of the healthcare services that would typically be provided to a patient under these scenarios. Experimental dyads are visited at home, twice, by a specially trained facilitator who communicates the dyad-specific results of the concordance assessment, helps older adults convey their wishes to their proxies, and offers assistance in completing a guide entitled <it>My Preferences </it>that we designed specifically for that purpose. In between these meetings, experimental dyads attend a group information session about <it>My Preferences</it>. Control dyads attend three monthly workshops aimed at promoting healthy behaviors. Concordance assessments are repeated at the end of the intervention and 6 months later to assess improvement in predictive accuracy and cost savings, if any. Copies of completed guides are made at the time of these assessments.</p> <p>Discussion</p> <p>This study will determine whether the tested intervention guides proxies in making decisions that concur with those of older adults, motivates the latter to record their wishes in writing, and yields savings for the healthcare system.</p> <p>Trial Registration</p> <p><a href="http://www.controlled-trials.com/ISRCTN89993391">ISRCTN89993391</a></p
Common etiological architecture underlying reward responsiveness, externally driven eating behaviors, and BMI in childhood: findings from the Gemini twin cohort
BACKGROUND: Studies have reported that impulsivity predicts childhood BMI and that the association is mediated by eating behaviors. One aspect of impulsivity-potentially crucial in the obesity context-is reward responsiveness, which may predispose to responsiveness to palatable food cues. The behavioral susceptibility theory hypothesizes that genetic susceptibility to obesity operates partly via genetically determined differences in appetite regulation. Reward responsiveness may therefore be one of the neuro-endophenotypes that mediates genetic susceptibility to obesity. OBJECTIVE: To test whether reward responsiveness, eating behaviors, and child BMI share common genetic architecture. METHODS: We examined reward responsiveness, eating behaviors, and BMI in 5-year-old children from Gemini, a UK birth cohort of 2402 twin pairs born in 2007. All measures were collected by parent report. Reward responsiveness was derived from the Behavioral Approach System. Compulsion to eat and eating for pleasure was measured with the "food responsiveness" scale of the Child Eating Behavior Questionnaire. Wanting to eat in response to environmental food cues was measured with the "external eating" scale of the Dutch Eating Behavior Questionnaire. Maximum-likelihood structural equation modeling was used to establish underlying common genetic and environmental influences. RESULTS: There were significant positive phenotypic correlations between all traits except for reward responsiveness and BMI. Genetic factors explained the majority of the association between food responsiveness and external eating (74%, 95% CI: 61, 87), whereas common shared environmental factors explained the majority of the associations between reward responsiveness with both food responsiveness (55%, 95% CI: 20, 90) and external eating (70%, 95% CI: 39, 100). CONCLUSIONS: Our study demonstrates the importance of common environmental factors in the shared etiology between reward responsiveness and childhood eating behaviors. However, the common etiology underlying both reward responsiveness and BMI is unclear, as there was no phenotypic correlation between reward responsiveness and BMI at this age. Further longitudinal research needs to detangle this complex relationship throughout development
The use of visual and automatized behavioral markers to assess methodologies: a study case on PIT-tagging in the Alpine newt
peer reviewedBiomarkers are now widely used as tools in various research fields to assess individual integrity. The recent advances in quantification methods of behavioral patterns, such as computerized video-tracking procedures, make them valuable biomarkers. However, the corollary of these novelties is that they remain relatively unknown and unused. In this study, we show that such tools can assess the validity of research methods, such as individual recognition. To demonstrate this we employed as a model a marking method (Passive Integrate Transponders: PIT-tagging) widely used in amphibians. Both detailed visual observations and video-tracking methods were complementary in highlighting components at different behavioral scales: locomotion, feeding, and breeding. We illustrate the scientific and ethical adequacy of the targeted marking method but also suggest that more studies should integrate behavioral analyses. Such biomarkers are a powerful tool to assess conservation concerns when other techniques cannot detect detrimental effects
A saturated map of common genetic variants associated with human height
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes(1). Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel(2)) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants
A saturated map of common genetic variants associated with human height.
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries
- …