6,121 research outputs found
Delivery of human apolipoprotein (apo) E to liver by an [E1(-), E3(-), polymerase(-), pTP(-)] adenovirus vector containing a liver-specific promoter inhibits atherogenesis in immunocompetent apoE-deficient mice
Recombinant adenovirus (rAd)-mediated apoE gene transfer to the liver of apoE(-/-) mice is anti-atherogenic. However, first generation rAd vectors were associated with immune clearance of transduced hepatocytes, while an improved [E1(-), E3(-) polymerase(-)] adenovirus vector that persisted in the liver, had transient effects due to cellular shutdown of the cytomegalovirus (CMV) promoter (Ad-CMV-apoE). Here, we utilise an improved class of rAd vector with multiple deletions in the E1, E3, polymerase and pTP (pre-terminal protein) genes, which contains a modular synthetic liver-specific promoter (LSP) to drive expression of the human apoE cDNA (Ad-LSP-apoE) for hepatic gene transfer. Approximately 1 year old apoE(-/-) mice were injected intravenously with 4x10(10) virus particles of either Ad-LSP-apoE or Ad-CMV-apoE. Animals were monitored for plasma apoE, total plasma cholesterol and plasma lipoprotein distribution. The effect of Ad-LSP-apoE on atheroma progression was assessed in animals killed at 8 and 28 weeks after the injections. Ad-LSP-apoE vector administration gave sustained, though low, levels of plasma apoE throughout the study period without inducing a humoral immune response, but failed to reduce plasma cholesterol or normalize the adverse lipoprotein profile. Animals killed 8 weeks after the injections, demonstrated no significant retardation of atherosclerosis, whereas aortic lesions in those killed at 28 weeks were significantly reduced by 30% ( P< 0.006) compared to untreated animals. In summary, the combination of a multiply deleted rAd vector with a liver-specific promoter provided sustained low levels of plasma apoE, resulting in significant retardation of aortic atherosclerotic lesions
Recommended from our members
New singularities in unexpected places
Spacetime singularities have been discovered which are physically much weaker than those predicted by the classical singularity theorems. Geodesics evolve through them and they only display infinities in the derivatives of their curvature invariants. So far, these singularities have appeared to require rather exotic and unphysical matter for their occurrence. Here, we show that a large class of singularities of this form can be found in a simple Friedmann cosmology containing only a scalar-field with a power-law self-interaction potential. Their existence challenges several preconceived ideas about the nature of spacetime singularities and has an impact upon the end of inflation in the early universe. This is the author accepted manuscript. The final version is available from World Scientific via http://dx.doi.org/10.1142/S021827181544012
Singular inflation
We prove that a homogeneous and isotropic universe containing a scalar field with a power-law potential, V(ϕ)=Aϕ^n, with 00 always develops a finite-time singularity at which the Hubble rate and its first derivative are finite, but its second derivative diverges. These are the first examples of cosmological models with realistic matter sources that possess weak singularities of “sudden” type. We also show that a large class of models with even weaker singularities exists for noninteger n>1. More precisely, if k<n<k+1 where k is a positive integer then the first divergence of the Hubble rate occurs with its (k+2)th derivative. At early times these models behave like standard large-field inflation models but they encounter a singular end state when inflation ends. We term this singular inflation.A.A.H.G. and J.D.B. are supported by the STFC.This is the author accepted manuscript. The final version is available from APS via http://dx.doi.org/10.1103/PhysRevD.91.08351
Retardation of atherosclerosis in immunocompetent apolipoprotein (apo) E-deficient mice followingliver-directed administration of a [E1-, E3-,polymerase-] adenovirus vector containing the elongation factor-1a promoter driving expression of human apoE cDNA
Although gene transfer of human apolipoprotein E (apoE), a 34-kDa circulating glycoprotein, to the liver of apoEdeficient(apoE-/-) mice using recombinant adenoviral vectors (rAd) is antiatherogenic, its full therapeutic potentialhas yet to be realized. First generation vectors led to immune clearance of transduced hepatocytes, while animproved vector with adenovirus regions E1, E3 and DNA polymerase deleted also had transient effects due tocellular shutdown of the cytomegalovirus (CMV) promoter. Here, we have studied an alternative promoter from thecellular elongation factor 1a (EF-1a) gene, injecting 6-8 week old apoE-/- mice intravenously with 2x1010 virusparticles (vp) of the [E1-, E3-, polymerase-] rAd vector Ad-EF1·-apoE. Plasma apoE levels were low (18-55 ng/ml)and failed to reduce plasma cholesterol or normalize the adverse lipoprotein profile. By contrast, thehyperlipidaemic phenotype of apoE-/- mice treated with Ad-CMV-apoE (2x1010 vp) was transiently normalized.Nevertheless, at termination (265 days) the aortic lesion areas in animals given Ad-EF1·-apoE were significantlyreduced by 15% (P<0.05) compared to untreated animals, a decrease approaching that in Ad-CMV-apoE-treatedmice (23%; P<0.02). Importantly, the attenuation of apoE transgene expression noted with the CMV promoter wasabsent with the EF-1a promoter, which gave relatively sustained, albeit low, levels of plasma apoE throughout thestudy period
Apolipoprotein E delivery by peritoneal implantation of encapsulated recombinant cells improves the hyperlipidaemic profile in apoE-deficient mice
Plasma apolipoprotein E (apoE) is a 34-kDa polymorphic protein which has atheroprotective actions by clearing remnant lipoproteins and sequestering excess cellular cholesterol. Low or dysfunctional apoE is a risk factor for hyperlipidaemia and atherosclerosis, and for restenosis after angioplasty. Here, in short-term studies designed to establish proof-of-principle, we investigate whether encapsulated recombinant Chinese hamster ovary (CHO) cells can secrete wild-type apoE3 protein in vitro and then determine whether peritoneal implantation of the microcapsules into apoE-deficient (apoE(-/-)) mice reduces their hypercholesterolaemia.Recombinant CHO-E3 cells were encapsulated into either alginate poly-L-lysine or alginate polyethyleneimine/polybrene microspheres. After verifying stability and apoE3 secretion, the beads were then implanted into the peritoneal cavity of apoE(-/-) mice; levels of plasma apoE3, cholesterol and lipoproteins were monitored for up to 14 days post-implantation.Encapsulated CHO-E3 cells continued to secrete apoE3 protein throughout a 60-day study period in vitro, though levels declined after 14 days. This cell-derived apoE3 was biologically active. When conditioned medium from encapsulated CHO-E3 cells was incubated with cultured cells pre-labelled with [H-3]-cholesterol, efflux of cholesterol was two to four times greater than with normal medium (at 8 h, for example, 7.4+/-0.3% vs. 2.4+/-0.2% of cellular cholesterol; P<0.001). Moreover, when secreted apoE3 was injected intraperitoneally into apoE(-/-) mice, apoE3 was detected in plasma and the hyperlipidaemia improved. Similarly, when alginate polyethyleneimine/polybrene capsules were implanted into the peritoneum of apoE(-/-) mice, apoE3 was secreted into plasma and at 7 days total cholesterol was reduced, while atheroprotective high-density lipoprotein (HDL) increased. In a second study, apoE was detectable in plasma of five mice treated with alginate poly-L-lysine beads, 4 and 7 days post-implantation, though not at day 14. Furthermore, their hypercholesterolaemia was reduced, while HDL was clearly elevated in all mice at days 4 and 7 (from 18.4+/-6.2% of total lipoproteins to 31.1+/-6.8% at 7 days; P<0.001); however, these had rebounded by day 14, possibly due to the emergence of anti-apoE antibodies.We conclude that microencapsulated apoE-secreting cells have the potential to ameliorate the hyperlipidaemia of apoE deficiency, but that the technology must be improved to become a feasible therapeutic to treat atherosclerosis. (C) 2004 Elsevier B.V. All rights reserved
Two-years Postradiotherapy Biopsies: Lessons from MRC RT01 Trial
Background:
The importance of 2-yr postradiotherapy prostate biopsy status remains uncertain.
Objective:
To assess the value of 2 year post treatment biopsies in a randomised trial of radiotherapy dose escalation.
Design, setting, and participants:
Between 1998 and 2001, 843 men with localised prostate cancer were randomised to receive either control-64 Gy or escalated-74 Gy conformal radiotherapy (CFRT) in the MRC RT01 trial in combination with 3–6-mo neoadjuvant androgen deprivation therapy. Prostate biopsies were planned at 2 yr from start of CFRT in suitable men.
Outcome measurements and statistical analysis:
Prostate biopsy results and prostate-specific antigen (PSA) levels performed at 2 yr post-CFRT were evaluated with long-term biochemical progression free survival (bPFS) and overall survival. Outcome measures were timed from the 2-yr biopsy using a landmark approach.
Results and limitations:
A 2-yr biopsy was performed in 312/843 patients. One hundred and seventy-seven patients were included in the per-protocol group with median follow-up of 7.8 yr from biopsy. Median PSA at biopsy was 0.5 ng/ml. Sixty-four bPFS events were reported: 46/145 (32%) in patients with negative, 6/18 (33%) suspicious, and 12/14 (86%) positive biopsies. A positive biopsy was prognostic of worse bPFS, going forward, compared with negative and suspicious biopsies, hazard ratio (HR) = 4.81 (95% confidence interval [CI]: 2.50–9.26, p < 0.001). The estimate for survival was HR = 1.58 (95% CI: 0.52–4.78, p = 0.42). PSA values at 2 yr between 1.01 ng/ml and 2.09 ng/ml were also associated with subsequent PSA failures (HR = 2.71, 95% CI: 1.98–3.71), bPFS events (HR = 2.45, 95% CI: 1.81–3.32), and prostate cancer-specific survival (HR = 2.87, 95% CI: 1.08–7.64) compared with PSA ≤1.0 ng/ml.
Conclusions:
Two-year postradiotherapy prostate biopsies have limited value in patients with PSA control but both positive biopsy and higher PSA status are strongly associated with future bPFS events. A policy of selected biopsy may provide an opportunity for early salvage interventions.
Patient summary:
Routine 2-yr postradiotherapy biopsy is not recommended but can be considered in selected patients with unfavourable post-treatment prostate-specific antigen levels who are suitable for early salvage treatments
Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms.
Diatom biofilms are abundant in the marine environment. It is assumed (but untested) that extracellular polymeric substances (EPS), produced by diatoms, enable cells to cope with fluctuating salinity. To determine the protective role of EPS, Cylindrotheca closterium was grown in xanthan gum at salinities of 35, 50, 70 and 90 ppt. A xanthan matrix significantly increased cell viability (determined by SYTOX-Green), growth rate and population density by up to 300, 2,300 and 200%, respectively. Diatoms grown in 0.75% w/v xanthan, subjected to acute salinity shock treatments (at salinities 17.5, 50, 70 and 90 ppt) maintained photosynthetic capacity, Fq'/Fm', within 4% of pre-shock values, whereas Fq'/Fm' in cells grown without xanthan declined by up to 64% with hypersaline shock. Biofilms that developed in xanthan at standard salinity helped cells to maintain function during salinity shock. These results provide evidence of the benefits of living in an EPS matrix for biofilm diatoms
The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells
Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis.
<p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation.
<p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI.
<p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL
- …
